

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation & Purification Reviews

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597294>

### Advances in Chromatographic Analysis of Tetracyclines in Foodstuffs of Animal Origin—A Review

V. F. Samanidou<sup>a</sup>; K. I. Nikolaidou<sup>a</sup>; Ioannis N. Papadoyannis<sup>a</sup>

<sup>a</sup> Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece

**To cite this Article** Samanidou, V. F. , Nikolaidou, K. I. and Papadoyannis, Ioannis N.(2007) 'Advances in Chromatographic Analysis of Tetracyclines in Foodstuffs of Animal Origin—A Review', *Separation & Purification Reviews*, 36: 1, 1 – 69

**To link to this Article: DOI:** 10.1080/15422110600822758

**URL:** <http://dx.doi.org/10.1080/15422110600822758>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## Advances in Chromatographic Analysis of Tetracyclines in Foodstuffs of Animal Origin—A Review

V. F. Samanidou, K. I. Nikolaïdou, and I. N. Papadoyannis

Laboratory of Analytical Chemistry, Department of Chemistry,  
Aristotle University of Thessaloniki, Thessaloniki, Greece

**Abstract:** Tetracyclines (TCs) are broad-spectrum antibiotics in human and veterinary medicine, characterized by their exceptional chemotherapeutic efficacy against a wide range of Gram-positive and Gram-negative bacteria, rickettsiae, spirochetes, large viruses, chlamydia, mycoplasmas and protozoan parasites. The use of tetracyclines is increasing, as they are used not only in treatment but also prevention of illnesses. Moreover TCs are given to animals destined for human consumption to promote growth and may potentially result in the presence of residues in edible animal tissues, which can be toxic and dangerous for human health and potentially cause allergic reactions. An extended and comprehensive review on the analytical methodologies concerning tetracyclines in foodstuffs of animal origin reported in literature is provided in the present article. Emphasis is given on sample preparation regarding isolation and purification, chromatographic conditions and method validation according to the legislation. Results of published assays are comparatively presented and criticized.

**Keywords:** Tetracyclines, antibiotics, foodstuff, chromatography, analysis

### INTRODUCTION

Tetracycline antibiotics (TCs) were first discovered in 1945. They derived from a species of *Streptomyces* bacteria. They are broad-spectrum antibiotic

Received 22 November 2005, Accepted 28 January 2006

Address correspondence to Ioannis N. Papadoyannis, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece. E-mail: papadoya@chem.auth.gr

agents extensively used to control bacterial infections in humans and animals. They exhibit activity against infections caused by both Gram-positive and Gram-negative bacteria, chlamydia, mycoplasmas, rickettsiae and protozoan parasites. Additionally TCs are given to animals destined for human consumption to promote growth. However the presence of residues in edible animal tissues may potentially cause allergic reactions or may lead to toxic and dangerous effects on human health. In order to ensure human safety and health the regulatory agencies in the European Union (EU), the United States and in individual countries have enacted permitted limits (PL) or Maximum Residue Levels (MRLs) for the presence of TCs in animal products (1–5).

The determination of residual TCs in animal products is consecutively very important. It has been the subject of several analytical studies using different techniques. Microbiological assays and immunoassays are routinely used as screening methods to detect tetracycline residues in food, despite their important disadvantages, like poor sensitivity and selectivity, semi-quantitative measurements of residues detected and false positive results. However the confirmation and quantification of TCs residues certainly require chemical methods. At present chromatographic techniques are applied at most as confirmatory for TCs residues analysis in food of animal origin. Despite the simplicity and the low cost of TLC, HPLC coupled with UV, fluorescence and mass spectrometry remains the technique of choice for multiresidue analysis.

Prior to the determination step, TCs have to be isolated from tissues usually by an extraction step with a suitable solvent system like McIlvaine buffer (citric acid with disodium hydrogen phosphate), succinate, phosphate and oxalate buffers followed by a cleanup procedure. More details on the analytical methodologies for TCs' extraction conditions, analysis, detection published within the last two decades are described in the following paragraphs.

The great interest on these compounds is reflected by the significant number of review articles that can be found in literature after 1990. The first review is written by Barker and Walker in 1992. The authors present an overview of chromatographic methods for the separation and determination of tetracyclines isolated from foods. The methods reviewed include microbial inhibition, immunoassay and receptor technologies for detection, techniques for isolation from food matrices, and thin-layer chromatographic, high-performance liquid chromatographic, gas chromatographic and mass spectrometric procedures for determination of these compounds. A discussion of the variables involved in methodologies and a review of method criteria are offered from 81 reviewed articles (6).

One year later, Shaikh and Moats presented a review of developments in the liquid chromatographic (LC) methods of analysis for the residues of antibiotics (aminoglycosides, chloramphenicol, sulfonamides, tetracyclines macrolides,  $\beta$ -lactams, etc.) in food products of animal origin. This review

covers cleanup procedures, such as ultrafiltration, liquid-liquid partition, solid-phase extraction, immunoaffinity, and matrix solid-phase dispersion, for use as extraction, deproteinization, and concentration steps (7).

Five review papers were found in 1998. Niessen presented an overview of the analysis of antibiotics by liquid chromatography–mass spectrometry. Currently available data on different compound classes including tetracyclines were reviewed with special emphasis on aspects relevant to LC–MS and on the mass spectral information obtained (8).

Oka et al. in their review summarized the recent developments in mass spectrometric analysis of tetracycline antibiotics (TCs) in foods. The mass spectrometric techniques discussed are: the collision-activated decomposition mass-analysed ion kinetic energy spectrometry (CAD MIKES), thin-layer chromatography (TLC)–fast atom bombardment (FAB) mass spectrometry (MS), particle beam (PB) liquid chromatography (LC)–MS, LC-frit FAB-MS, thermospray (TSP) LC–MS, atmospheric chemical ionization (APCI) LC–MS and tandem electrospray (ESI) LC–MS. The advantages and limitations of the above-mentioned techniques are described in the confirmation of TCs in foods (9).

Schenck and Callery presented an overview of the recent developments in the chromatographic determination of antibiotic residues, including tetracyclines, in milk that may result from the widespread use of antibiotics in dairy cattle management. They conclude that rapid screening tests are commonly used to detect the presence of antibiotics in milk. However more accurate chromatographic methods are required by government regulatory agencies to identify and confirm the identity and quantity of antibiotic present (10).

Fedeniuk and Shand published a short review summarizing the basic theory and practices of the extraction and cleanup of agricultural antibiotics from biomatrices, providing information for the analysis of residues of ionophores,  $\beta$ -lactams, macrolides, chloramphenicol, aminoglycosides, tetracyclines and peptide antibiotics (11).

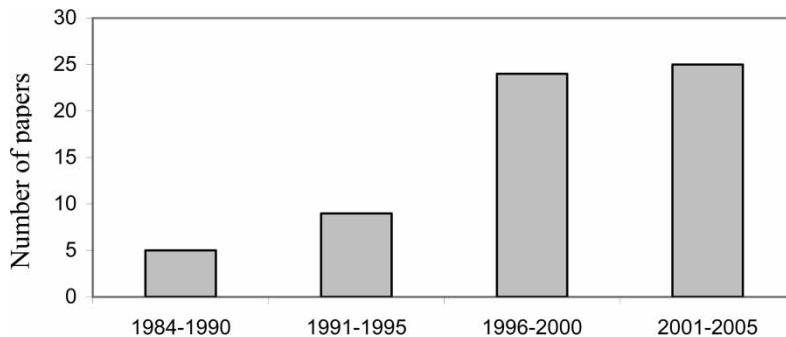
Marzo and Dal Bo described the analytical methods employed in the pharmacokinetics of antibiotics (cephalosporins, aminoglycosides, tetracyclines, rifamycin and quinolones). The pharmacokinetic characteristics of each class of drugs are briefly described, and some historical and chemical notes on the various classes are given (12).

Two years later, Oka et al. in their review on the chromatographic analysis of tetracycline antibiotics in foods presented an overview of the recent developments in chromatographic analysis methods for TCs in foods. This review covers separation techniques like thin layer chromatography, capillary electrophoresis, high-performance liquid chromatography, and sample preparation including extraction and cleanup procedures (13).

Three review articles are found for 2002. Di Corcia and Nazzari present an overview of liquid chromatographic–mass spectrometric methods for analyzing antibiotic and antibacterial agents in animal food products focusing on sample treatment (14).

Joshi reviewed the HPLC separation of antibiotics present in formulated and unformulated samples. Chromatographic conditions such as column and mobile phase for the various classes of antibiotics viz. penicillins, cephalosporins, macrolides, tetracyclines, aminoglycosides, quinolones, rifamycins, etc. published from April 1998 to November 2000 are presented providing a brief discussion on chemical structure, spectrum of activity and action mechanism of each class (15).

McEvoy wrote on the contamination of animal feeding stuffs as a cause of residues in food: a review of regulatory aspects, incidence and control. This paper reviews the legislative framework controlling the use of veterinary medicines and zootechnical food additives such as sulphonamides, tetracyclines, nitroimidazoles, nitrofurans, ionophore coccidiostats and nicarbazin, in the EU. The literature on each of these is reviewed and examples of interventions to minimize contamination are given (16).


Hernández et al. in 2003 presented an overview on the analysis of antibiotics in biological samples by capillary electrophoresis. Antibiotic groups studied include  $\beta$ -lactam antibiotics (penicillins and cephalosporins); aminoglycosides; quinolones; and tetracyclines (17).

One year later, Michalova et al. in their article: "Tetracyclines in veterinary medicine and bacterial resistance to them" present the history and classification of tetracyclines, their application in veterinary medicine, their mode of action and information on the mechanisms of bacterial resistance (18).

Smyth and Brooks presented a critical evaluation of HPLC-ESI-MS and CE-ESI-MS for the detection and determination of small molecules of significance in clinical and forensic science. Tetracyclines are studied among several drugs. Analytical information on sample preparation and analytical techniques are provided (19).

In 2005, Anderson et al. wrote on the complexities in tetracycline analysis, chemistry, matrix extraction, cleanup and liquid chromatography. Their review article compiles, compares, and discusses the results and observations found in published methods, focusing on chemical principles in order to aid chemists to develop useful analyses. Seventy-four articles are reviewed (20).

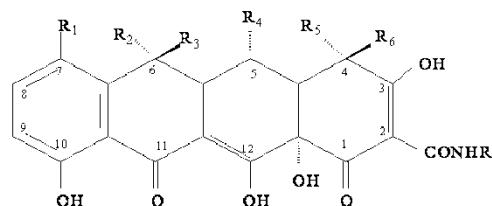
From all works stated above it is obvious that there is a constantly increasing interest for this class of antibiotics especially after 1995. This trend is definitely shown in Figure 1. Herein an extended and comprehensive overview of the analytical methodologies for the determination of tetracycline antibiotics in foodstuffs of animal origin recently reported in literature is provided. The chemistry and antimicrobial activity of tetracyclines in human and veterinary medicine is studied. Legislation aspects for veterinary antibiotics are taken into consideration. Emphasis is given on the determination of these compounds in edible animal tissues such as bovine, porcine and chicken muscle, kidney, liver, eggs, milk, cheese, shrimps, fish and honey. Results of various published assays are presented comparatively and are criticized regarding extraction methods during sample preparation, analytical conditions and method validation.



**Figure 1.** Number of published papers on the determination of tetracyclines by various analytical techniques over the period 1987–2005.

## CHEMISTRY AND ANTIMICROBIAL ACTIVITY OF TETRACYCLINES

### Structure, Chemical Characteristics and Stability


Tetracyclines belong chemically to the polyketides. Under the name “tetracycline” (1,4,4a,5,5a,6,11,12a-octahydronaphthacene) a number of antibiotics of either natural, or semi-synthetic origin, derived from a system of four linearly fused six-membered rings (A, B, C and D) as shown in Figure 2, to which a variety of functional groups are connected. Five asymmetric centers exist on the tetracycline molecules: C-4, C-4a, C-5a, C-6, C-12a. (1, 5).

The antimicrobial activity of tetracyclines is strongly connected with their chemical structure and stereochemistry and more specifically with the maintenance of the linear fused tetracycle, the stereochemical configurations at the 4a, 12a (A-B ring junction) and 4, 6 positions and the keto-enol system (11, 12 positions). If functional groups at positions 1, 2, 3, 10, 11 and 12 are changed the activity of the compounds is completely lost or significantly decreased. However, the addition of substituents to the amide nitrogen at 2 position increases the water solubility and still maintain activity. The 4-position can be altered slightly, having a monosubstituted amine. A variety of functional groups placed at positions 5, 6, 7 and 9 improve antimicrobial activity or stability. R<sub>4</sub> at position 5 can be either a hydroxyl, and a keto group, or hydrogen. The 7-position is substituted with chlorine, fluorine, bromine and nitro groups. Substituents at 6 position can be hydrogen, hydroxyl and methylene groups while on 8-position any electron donating group is accepted. At the 9-position, the introduction of an acylamido group has led to the developemed of new tetracyclines, named glycycyclines, which exhibit activity against tetracycline-resistant bacteria (2).

Eight tetracyclines are commercially available: tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC), doxycycline (DC), minocycline (MNC), methacycline (MTC), demeclocycline (DMC), and rolitetracycline (RTC) and can be used in human and veterinary medicine.

Tetracyclines are solid, crystalline, odorless compounds with yellow or pale yellow color, usually in the form of hydrates or hydrochloride salts. They are soluble in dilute acids and in solutions of alkali hydroxides, slightly soluble in water and methanol and practically insoluble in ethers and chloroform. Their ultraviolet spectra show strong absorption at 270 and 350 nm. They are amphoteric compounds with dissociation constants corresponding to the acidic hydroxyl group at 3-position at  $pK_a$  2.8–3.3, the dimethylamino group at 4-position at the  $pK_a$  7.3–8.3, and the hydroxyl group at 12-position at  $pK_a$  9.3–10.2 (3).

Tetracyclines are relatively unstable compounds. Although they are stable in air, exposure to strong sunlight or high temperatures (over 90°C) for chlortetracycline, causes them to darken. Sunlight produces various degradation products under extreme acidic, basic or temperature conditions. When exposed to dilute acid ( $pH < 3$ ) tetracyclines undergo epimerization at C-4 as well as dehydration at C-6, to yield 4-epi-TCs



| Compound              | Chemical name                                                                                                                              | R <sub>1</sub>                   | R <sub>2</sub>   | R <sub>3</sub> | R <sub>4</sub>                   | R <sub>5</sub>                   | R <sub>6</sub> | R <sub>7</sub> |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|----------------|----------------------------------|----------------------------------|----------------|----------------|
| TC Tetracycline       | 2-naphthacencarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-monohydrochloride | H                                | CH <sub>3</sub>  | OH             | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H              | H              |
| OTC Oxytetracycline   | 5-hydroxy-tetracycline                                                                                                                     | H                                | CH <sub>3</sub>  | OH             | OH                               | N(CH <sub>3</sub> ) <sub>2</sub> | H              | H              |
| CTC Chlortetracycline | 7-chloro-tetracycline                                                                                                                      | Cl                               | CH <sub>3</sub>  | OH             | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H              | H              |
| DC Doxycycline        | 6-deoxy-5-hydroxy-tetracycline                                                                                                             | H                                | CH <sub>3</sub>  | H              | OH                               | N(CH <sub>3</sub> ) <sub>2</sub> | H              | H              |
| MNC Minocycline       | 7-dimethylamino-6-demethyl-6-deoxy-tetracycline                                                                                            | N(CH <sub>3</sub> ) <sub>2</sub> | H                | H              | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H              | H              |
| MTC Methacycline      | 6-methylene-5-hydroxy-tetracycline                                                                                                         | H                                | =CH <sub>2</sub> | OH             | N(CH <sub>3</sub> ) <sub>2</sub> | H                                | H              |                |
| DMC Demeclocycline    | 6-demethyl-7-chloro-tetracycline                                                                                                           | Cl                               | H                | OH             | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H              | H              |

Figure 2. Chemical structures of examined tetracyclines.

(continued)

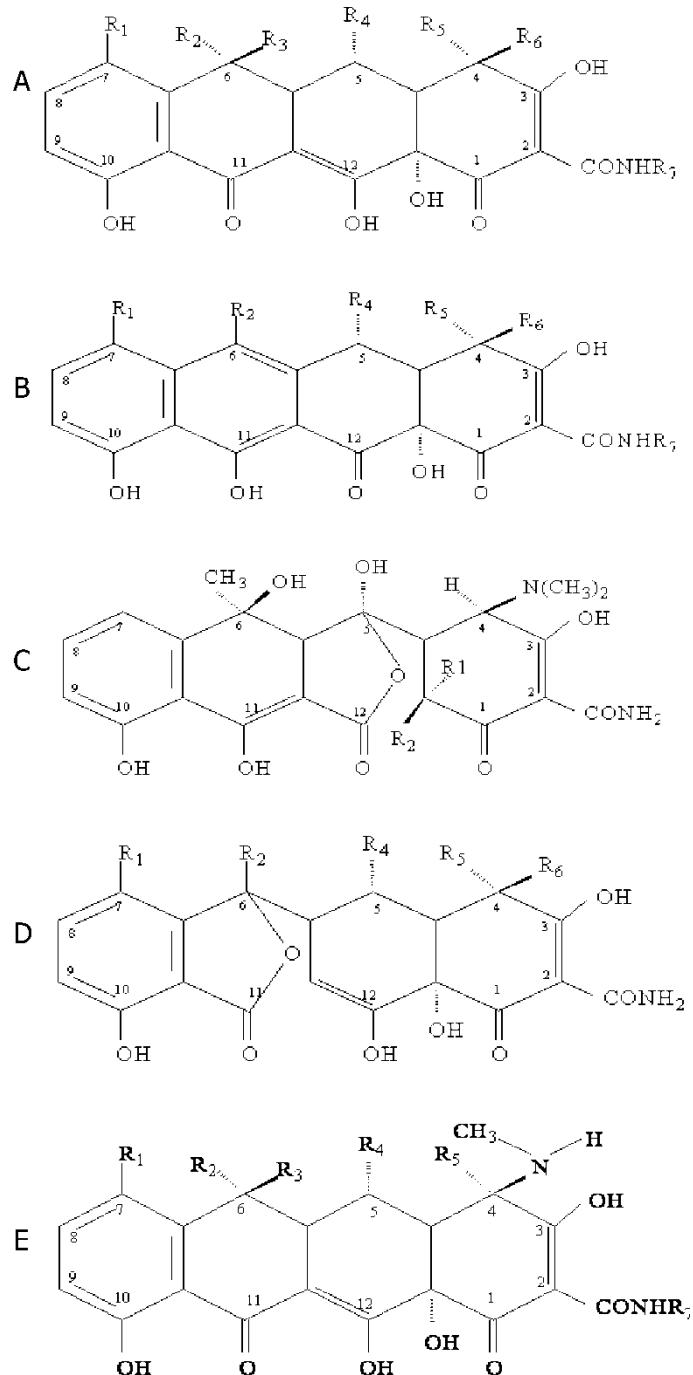



Figure 2. Continued.

| Compound        |                               | Structure | R <sub>1</sub> | R <sub>2</sub>  | R <sub>3</sub> | R <sub>4</sub> | R <sub>5</sub>                   | R <sub>6</sub>                   | R <sub>7</sub>  |
|-----------------|-------------------------------|-----------|----------------|-----------------|----------------|----------------|----------------------------------|----------------------------------|-----------------|
| 4-ETC           | Epi-tetracycline              | A         | H              | CH <sub>3</sub> | OH             | H              | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H               |
| 4-EOTC          | Epi-oxytetracycline           | A         | H              | CH <sub>3</sub> | OII            | OII            | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H               |
| 4-ECTC          | Epi-chlortetracycline         | A         | Cl             | CH <sub>3</sub> | OH             | H              | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H               |
| 4-EDC           | Epi-doxycycline               | A         | H              | CH <sub>3</sub> | H              | OH             | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H               |
| ATC             | Anhydro-tetracycline          | B         | H              | CH <sub>3</sub> | -              | H              | N(CH <sub>3</sub> ) <sub>2</sub> | H                                | H               |
| AOTC            | Anhydro-oxytetracycline       | B         | H              | CH <sub>3</sub> | -              | OH             | N(CH <sub>3</sub> ) <sub>2</sub> | H                                | H               |
| ACTC            | Anhydro-chlortetracycline     | B         | Cl             | CH <sub>3</sub> | -              | H              | N(CH <sub>3</sub> ) <sub>2</sub> | H                                | H               |
| EATC            | Epi-anhydro-tetracycline      | B         | H              | CH <sub>3</sub> | -              | H              | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H               |
| EAOTC           | Epi-anhydro-oxytetracycline   | B         | H              | CH <sub>3</sub> | -              | OH             | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H               |
| EACTC           | Epi-anhydro-chlortetracycline | B         | Cl             | CH <sub>3</sub> | -              | H              | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | H               |
| ADTC            | 2-acetyl-2-decarboxamido TC   | A         | H              | CH <sub>3</sub> | OH             | H              | N(CH <sub>3</sub> ) <sub>2</sub> | H                                | CH <sub>3</sub> |
| ADOTC           | 2-acetyl-2-decarboxamido OTC  | A         | H              | CH <sub>3</sub> | OII            | OII            | N(CH <sub>3</sub> ) <sub>2</sub> | H                                | CH <sub>3</sub> |
| ADCTC           | 2-acetyl-2-decarboxamido CTC  | A         | Cl             | CH <sub>3</sub> | OH             | H              | N(CH <sub>3</sub> ) <sub>2</sub> | H                                | CH <sub>3</sub> |
| $\alpha$ -APOTC | $\alpha$ -apo-oxytetracycline | C         | H              | OII             |                |                |                                  |                                  |                 |
| $\beta$ -APOTC  | $\beta$ -apo-oxytetracycline  | C         | OH             | H               |                |                |                                  |                                  |                 |
| IOTC            | Iso-oxytetracycline           | D         | H              | CH <sub>3</sub> | -              | OH             | N(CH <sub>3</sub> ) <sub>2</sub> | H                                | -               |
| ICTC            | Iso-chlortetracycline         | D         | Cl             | CH <sub>3</sub> | -              | H              | H                                | N(CH <sub>3</sub> ) <sub>2</sub> | -               |
| N-DMOTC         | N-desmethyl-oxytetracycline   | E         | H              | CH <sub>3</sub> | OH             | OH             | -                                | H                                | H               |
| N-DMCTC         | N-desmethyl-chlortetracycline | E         | Cl             | CH <sub>3</sub> | OH             | H              | -                                | H                                | H               |

Figure 2. Continued.

and anhydro-TCs respectively. Under strong acidic conditions (pH < 2) anhydro form of OTC, whose substituent R<sub>4</sub> is a hydroxyl group, suffers cleavage and lactonization to apo-derivatives. Mild alkali attacks C-11a to form a carbonate group. In TC, OTC and CTC where R<sub>3</sub> is a hydroxyl group, a C-ring opening occurs as the hydroxyl group attacks the freshly formed carboxylic acid at 11-position to form iso-derivatives. These degradation products are inactive or even toxic (anhydro-TCs) for humans and animals (1, 2).

Thermostability experiments in liquid media have shown that OTC is unstable in water at 100°C with a half-life of 2 min, but more stable in oil

at 180°C with a half-life of 8 min. Thermal stability of TCs in various food matrices differs a lot. OTC is more stable in salmon tissues than in buffer systems and also more stable in milk than in chicken or beef tissues. A heat treatment at 120°C for 60 min reduces OTC residues in meat tissues about 35–75% and CTC residues about 50%, depending on the cooking process. Certain food additives also influence significantly the rate of TCs degradation with pyrophosphates, hexametaphosphates and nitrites decreasing this rate (4).

Tetracyclines are also chemically characterized by their strong tendency to form fluorescent complexes with various chemical species, like  $\text{Fe}^{3+}$ ,  $\text{Fe}^{2+}$ ,  $\text{Cu}^{2+}$ ,  $\text{Ni}^{2+}$ ,  $\text{Co}^{2+}$ ,  $\text{Zn}^{2+}$ ,  $\text{Mn}^{2+}$ ,  $\text{Mg}^{2+}$ ,  $\text{Ca}^{2+}$ ,  $\text{Be}^{2+}$ ,  $\text{Al}^{3+}$ , phosphates, citrates, salicylates, *p*-hydroxybenzoates, saccharin anion, caffeine, urea, thiourea, polyvinylpyrrolidone, because of its B- and C-ring oxygen atoms. Due to their polar character, TCs bind with lipoproteins, albumins and globulins (1).

### History and Classification of TCs

Systematic research on antibiotics after World War II led, in the 1940s, to the discovery of the first member of TCs class, chlortetracycline. In 1948, Benjamin M. Duggar, Professor of Plant Physiology at the University of Wisconsin first isolated a tetracycline member. The substance (chlortetracycline) extracted from a type of soil that contained a unique fungi (*S. aureofaciens*), found in the vicinity of cemeteries, was named “aureomycin” due to its yellow color. Terramycin (oxytetracycline) was isolated 2 years later by Finley from cultivation of *Streptomyces rimosus*. The parent compound, tetracycline, was first reported in 1953 after catalytic hydrogenolysis of aureomycin, but its production is also possible by cultivation of some *Streptomyces* strains. In 1957, McCormick discovered 6-demethylchlortetracycline (demeclocycline), a metabolite of a *S. aureofaciens* mutant. Other important tetracyclines like doxycycline, minocycline, methacycline, and rolitetracycline were produced semi synthetically. In the early 1990s a new generation of TCs was discovered, named glycycyclines, with addition of a 9-glycylamido group (1).

All these tetracyclines mentioned above belong to the “typical tetracyclines,” characterized by the same antimicrobial activity and the same mechanism of action (inhibition of protein synthesis) due to a very specific chemical structure. A second class of TC antibiotics, “atypical tetracyclines” includes nortetracyclines (the B-ring comprises a five-member carbocycle), thiatetracyclines (posses a sulfur atom at C-ring) and some of typical TCs degradation products like anhydro- and epianhydro- derivatives. These molecules are characterized by a bactericidal activity by attacking cytoplasmic membranes and lack of any therapeutic interest because of their low-level bacteriostatic effect and their adverse side effects in

humans due to their ability to interact either with prokaryotic or with eukaryotic cells (18).

### Antimicrobial Activity

Tetracyclines are antibiotics having a very broad spectrum of antimicrobial activity against a wide range of gram-positive (*staphylococcus*, *streptococcus*, *pneumonococcus*, *enterococcus*) and gram-negative bacteria (*gonococcus*, *cholera*, *dysentery bacillus*, *brucella*), including some anaerobes. They are also active against chlamydia, *mycoplasmas*, *rickettsiae*, *spirochetes* and some large viruses, such as members of the lymphogranuloma group.

It should be noticed that due to the development of resistant bacteria strains, use of TCs for treatment of staphylococcal, streptococcal or pneumonococcal infections is significantly limited. The broad-spectrum of antimicrobial activity of TCs in connection with other characteristics, like their good absorbance, low toxicity and relative low cost, explains the wide use of this class of antibiotics in human and veterinary medicine for therapy of various bacterial and non-bacterial infections. Their use is also widespread in animal husbandry as promoting growth agents and for the prophylaxis of food-producing animals from infections (2).

### Veterinary Medicine

Tetracyclines are provided in veterinary medicine for treatment of gastrointestinal (gastritis, hepatitis), respiratory (pneumonia, reunites), genito-urinary (mastitis, uterine) and skin bacterial infections, infectious diseases of locomotive organs as well as for systemic infections, cholera and sepsis. TCs that can be used in veterinary medicine according to EU and FDA legislation are tetracycline, oxytetracycline, chlortetracycline and doxycycline, while animal species in which these drugs can be provided are beef, cattle, pig, sheep, goats, horses, dogs, cats, poultries, rabbits and fishes (18).

Tetracyclines are administered either orally or parenterally, in doses from 10 to 50 mg/per kg of body, depending on drug preparation and animal species. Oral preparations of tetracyclines cannot be administered to ruminants because of the destruction of the ruminal microflora. Rapid intravenous administration of tetracyclines can result in cardiovascular dysfunction and collapse in any species. The electrocardiographic abnormalities may be due to chelation of free calcium ions. Tetracyclines ideally should be diluted in fluids and administered slowly if given by the intravenous route.

Administration of TCs is forbidden during last-half of pregnancy and in small animals until 1 month of age, as these drugs were found to decolorize teeth and cause significant problems to bone formation and development due to formation of complexes with calcium ions. However, any combinations

of TCs with antacids, calcium, iron, sodium and magnesium supplements, phenobarbital, tereftthalic acid or microsomal enzyme inducers should be avoided as these medications changes blood concentrations of TCs (3).

As already mentioned, TCs are also used in veterinary medicine as feed additives to promote growth in animal husbandry. Growth-promoting properties of tetracyclines were first discovered in 1949 after chickens being fed with chlortetracycline supplemented feed. Subtherapeutic doses of OTC, TC and CTC were widely used for many years as growth-promoting agents in calves, chickens, turkeys, sheep and pigs. That practice contributes significantly to the development of resistant bacteria strains, a fact which threatens the future use of TCs as antibiotics either in human or in veterinary medicine. Moreover, TC residues in animal food products may lead to health problems to sensitive target groups of population. For all these reasons administration of TCs as feed additives is not allowed in the EU by legislation since 1975 (18).

### Human Medicine

The main indications for the administration of tetracyclines to humans are infections of *E. coli* and *H. influenzae*, infections of the bile duct, bacterial respiratory disorders including bronchitis prophylaxis, mixed infections arising from the mouth, pharynx, or intestinal tract, brucellosis, tularemia, plague and other pasteurelloses, leptospirosis, lymphogranuloma inguinale, cholera, and rickettsiosis. Eight TCs are available to human medicine: TC, OTC, CTC, DC, MNC, DMC, MTC, and RTC. They are usually administered orally, although some are available as parenteral products e.g., RTC, which is provided only parenterally.

Administration of TCs in humans is not indicated in cases of pregnancy, hepatic or renal deficiency and for children below 8 years old. Most important adverse effects are gastrointestinal disorders, colorization of skin and teeth, hepatic insufficiency, Fanconi syndrome. TCs interactions with penicillins, theophylline, antacids, magnesium, iron or calcium supplements, carbamazepine and vitamin A should be avoided (21, 22).

### Mechanism of Action and Resistance to Tetracyclines

Tetracyclines prevent bacterial growth by inhibiting protein synthesis. These drugs bind directly and specifically to the 30 S ribosomal subunit of protein S7 and block attachment of bacterial aminoacyl t-RNA to the acceptor sites on m-RNA, preventing the function of translation (addition of aminoacids to the growing peptide chain). Association of TCs with the ribosomes is a reversible process supported by various ribosomal proteins and certain genes of 16S-rRNA.

To interact with these molecule-targets, TCs need to penetrate through the bacterial cell and traverse cell membranes. In case of gram-negative bacteria, tetracyclines pass through the outer membrane with an energy-dependent process in the form of positively charged magnesium-antibiotic complexes and through the cytoplasmic membrane with passive diffusion as uncharged lipophilic molecules. Traverse of cytoplasmic membrane of gram-positive bacteria is also energy-dependent. Within the cytoplasm, TCs are likely to form complexes since the internal pH and divalent metal ion concentrations are higher than those outside the cell. Consequently the active form of these drugs that binds to the ribosome is a magnesium-tetracycline complex.

Weak inhibition of protein synthesis by 80 S ribosomes and poor accumulation of TCs by mammalian cells explains the absence of antieukaryotic activity. However, TCs inhibit protein synthesis by 70 S ribosomes in mitochondria and therefore some side effects can be caused in humans, but only in high doses (21).

During the last two decades, usage of tetracyclines in many infections has been limited due to the widespread growth of tetracycline resistant bacteria. Mainly there are two different tetracycline resistant mechanisms: (a) ribosomal protection, where certain bacterial genes attach and protect the ribosome the tetracyclines bind with and (b) efflux of the drug outside the cell through protein efflux-pumps. The ribosomal protection is developed above all from gram-positive bacteria and from the efflux system from gram-negative.

To overcome problems arising from the spreading of resistant bacteria, research started during the early 1990s to discover new TC members that exhibit activity against organisms resistant to older ones. Scientists confirmed that when the acyl group of 9-acylamido derivatives of minocycline was modified to include an N,N-dialkyamine group, the molecule not only contained antibacterial activities of other TCs but also exhibited activity against bacteria that have developed protection mechanisms. Glycyclines (9-glycylamido derivatives of TCs) are still in clinical trials, but many scientists believe they represent the future of TCs as antibiotics (2).

### Pharmacokinetic Profile

Tetracyclines are rapidly absorbed from the gastrointestinal tract. The degree of absorption after oral administration, as well as bioavailability, is directly in proportion with the lipophilicity of the drugs. The least lipophilic and worst absorbed is OTC, while DC is the best-absorbed tetracycline, as it is characterized by high lipophilicity, insignificant interaction with food components and less tendency to chelate with divalent ions. In cases of parenteral administration, absorbance and bioavailability are strongly dependent on the site of administration. Intramuscular administration into the shoulder of animals is

preferred. Bioavailability of TCs to chickens varies from 1% for CTC, 9.4% and 23% for OTC and TC to 41% for DC, while on pigs is 4.8% for OTC, 19% for OTC, 25% for TC and 60% for DC. Bioavailability of OTC after parenteral administration is about 99.5%.

Tetracyclines are widely distributed in the body as far as they are lipid soluble, with higher levels in kidney and liver cells. Important part of the administered dosages are concentrated in liver, excreted in bile and reabsorbed from the intestines. Due to this enterohepatic circulation, small amounts of TC antibiotics are present in the blood for a long period of time. DC, which is the most lipophilic, shows the greatest degree of penetration. Due to TCs tendencies to form chelate complexes with divalent ions, significant amounts are accumulated in the bones and egg cells. TCs also bind strongly with lipoproteins, with this tendency decreasing from DC to CTC, TC and OTC. They undergo minimal or no metabolism before elimination, and they are excreted in urine and feces, either unchanged or in a microbiological inactive form (1-3).

### Main Tetracycline Members

#### Chlortetracycline

Chlortetracycline was the first member of the tetracyclines class to be isolated in 1948 from *S. aureofaciens*. Its chemical name is 2-naphthacene-carboxamide, 7-chloro-4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a pentahydroxy-6-methyl-1,11-dioxo-onohydrochloride with molecular formula  $C_{22}H_{23}N_2O_8Cl \cdot HCl$  and molecular weight 515.34. It is a yellow, crystalline, odorless powder, stable in air but slowly affected by light. CTC is sparingly soluble in water, soluble in solutions of alkali hydroxides and carbonates, slightly soluble in alcohol, practically insoluble in acetone, in chloroform, in dioxane and in ether. Most important degradation products are epi-, anhydro, epianhydro and iso-derivatives.

CTCs antimicrobial activity spectrum and the mechanism of action are common with that of other TCs as described before. Most important preparations used in veterinary medicine in the USA are aureomycin uterine tablets for acute uterine infections in cattle, pigs and sheep, auromycin soluble powder USP for treatment of enteritis and pneumonia in calves and pigs and for cholera, synovitis and chronic respiratory disease in poultries, and chlortetracycline for medicated feed for enteritis, pneumonia, *E. coli* infections in calves, cattle, poultries, pigs and sheep (1-5).

#### Oxytetracycline

Oxytetracycline with chemical name 2-naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,6,10,12,12a hexahydroxy-6-methyl-1,11-dioxo-dihydrate, molecular formula  $C_{22}H_{24}N_2O_9 \cdot 2 H_2O$  and

molecular weight 496.46, was isolated from strains of *Streptomyces rimosus* and named terramycin in 1950. It is a pale yellow to tan, odorless, crystalline compound. It is stable in air, but exposure to strong sunlight causes it to darken. It loses potency in solutions of pH below 2, and is rapidly destroyed by alkali hydroxide solutions. OTC is very slightly soluble in water, freely soluble in 3 M hydrochloric acid and in alkaline solutions, and sparingly soluble in alcohols. Epi-, anhydro, epianhydro, apo-, N-desmethyl- and iso-derivatives are OTC's main degradation products.

Most frequently administered preparations of OTC in veterinary medicine are: oxytetracycline hydrochloride soluble powder for enteritis and pneumonia in calves, cattle, pig and sheep as well as for synovitis, hexamitiasis and chronic respiratory disease in poultry, terramycin tablets USP for treatment of enteritis and pneumonia in calves, oxytetracycline injection USP (parenteral administration) for treatment of antinobacillosis, anaplasmosis, uterine infections in cattles and for Ehrlichiosis and arthritis in horses (1–5).

#### Tetracycline

Under the chemical name, tetracycline, (2-naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-monohydro-chloride), the parent drug, was the third member to be produced after catalytic hydrogenolysis of aureomycin, but it can also be isolated from cultivations of *Streptomyces viridofaciens*. The molecular formula is  $C_{22}H_{24}N_2O_8$  and the molecular weight 443.43. It is a yellow, odorless, crystalline powder; moderately hygroscopic, stable in air, but exposure to strong sunlight in moist air causes it to darken. It loses potency in solution at pH below 2, and is rapidly destroyed by alkali hydroxide solutions. It is soluble in water and in solutions of alkali hydroxides and carbonates, slightly soluble in alcohol and practically insoluble in chloroform and in ether. Most important degradation products are epi-, anhydro, epi-anhydro-derivatives.

Some important preparations are: TC uterine tablets for treatment of uterine infections in cows, TC boluses USP for enteritis and pneumonia in calves, TC hydrochloride capsules USP for Rocky Mountain fever and other susceptible bacterial infections in dogs, TC · HCl soluble powder USP for enteritis and pneumonia in calves and pigs and for cholera, synovitis and chronic respiratory disease in poultry and TC oral suspension USP for bacterial gastroenteritis in cats and dogs (1–5).

#### Doxycycline

Doxycycline is semisynthetically produced and not isolated from *Streptomyces*. Its chemical name is 2-naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-monohydrate with molecular formula  $C_{22}H_{24}N_2O_8 \cdot H_2O$  and

molecular weight 462.45. Doxycycline differs a lot from other TCs. It's a yellow, crystalline powder, stable in air but less sensitive to light exposure, soluble in water and in solutions of alkali hydroxides and carbonates, slightly soluble in alcohol and practically insoluble in chloroform and in ether. DC is the most stable tetracycline due to absence of hydroxyl group at R<sub>3</sub> substituent. 4-epi-DC is the only degradation derivative that is formed.

Important differences can be noticed in pharmacology and pharmacokinetics as DC is more completely absorbed from the gastrointestinal tract than the tetracyclines developed earlier and absorption is less likely to be affected by food or calcium or other divalent or trivalent metals. Doxycycline is also more lipid-soluble than other TCs. In dogs, it is eliminated primarily through intestinal excretion (1–5).

### Future of Tetracyclines

One of the biggest problems with all antibiotic classes is that they are used much more frequently and sometimes in inappropriate ways, so that they have no effect on diseases and only increase the chance of causing resistant bacterial strains. Antibiotics like TCs used widely in livestock (TCs represented 66% of the total volume of antibiotics used for therapy in animals in the European Union) have led to an explosion of resistant strains that even effect the human population. Between approximately 50–90% of cattle, pig and poultry strains are found resistant to TCs. Glycylcyclines are the next generation of tetracyclines that will hopefully surpass resistance problems, representing the future of TCs as antibiotics (23).

Except from their bacteriostatic activity, in the early 1990s, tetracyclines have surprised researchers with unexpected properties that are entirely independent of their antimicrobial characteristics. It was found that TCs, especially DC, enhances natural inhibitors of matrix metalloproteinases. This family of enzymes are very important as they mediate the breakdown of various proteins (collagens, glycoproteins, proteoglycans), a procedure that is involved in many pathological processes responsible for a variety of disorders, like atherosclerosis, aortic aneurysms, corneal ulcers of the eye, inflammation, cancer development. The possibility of administration of TCs in some of these disorders as inflammatory or anticancer drugs is in a very early stage of study (2).

### LEGISLATION FOR VETERINARY ANTIBIOTICS

As already mentioned, the use of tetracycline antibiotics has become a serious problem with regards to infectious diseases, as they are substances that leave residues e.g., in milk or meat, which when consumed can be directly toxic or

cause allergic reactions in some hypersensitive individuals. Even low-level doses of antibiotic in foodstuffs consumed for long periods can lead to problems regarding the spread of drug-resistant micro-organisms.

Food safety and consumer health protection is a very important target for the EU. Thus, a number of regulations and directives are occupied with food safety matters, some of which regulate the use of antibiotics in veterinary medicine and livestock, as well as the control of their residues in foods of animal origin. To ensure human food safety, the European Union has set tolerance levels for many drugs in animal products. Sales of animal health antibiotics (excluding coccidiostatics) in 1997 within the EU were estimated at a total of 5,093 tons, with therapeutics being 69% of the total amount and growth promoters 31%. Approximately two-thirds of the therapeutic antibiotics were tetracyclines (66%) (23).

The use of veterinary antibiotics, including tetracyclines, as feed-additives and growth promoting agents in husbandry is not allowed in EU countries with 70/524/EEC directive (24), whose application started in 1975. Furthermore, the EU, in order to assure consumer protection, has established maximum residue limits (MRLs) for veterinary medicinal products in foodstuffs, through council regulation 2377/90/EC (25). According to this regulation, all kinds of residues are classified in four categories. The first includes substances for which final MRLs have been set; the second one includes substances for which it was not considered necessary to establish MRL values; and the third and fourth categories include substances with provisional MRLs and with no tolerance levels, respectively.

Tetracyclines belong to the first category. The MRL of 100 µg/kg has been set for meat tissues and milk for all TC members, while for eggs, liver and kidney, MRLs established are 200, 300 and 600 µg/kg, respectively. These values include not only the parent TC but also the 4-epimer derivatives. Table 1 presents the MRL values set by the EU.

Another important regulation is council directive 93/23/EC (26), which defines the conditions and methods for the residue control of food producing animals and their primary products, such as meat, milk, eggs and honey. The directive divides all residues into two groups. Group A comprises substances with no tolerance level, and group B substances with a certain MRL set, including veterinary drugs. Through this directive, a network of laboratories, responsible for monitoring of residues, is organized in various levels (field, national and community laboratories).

In the EU, there are no defined standardized techniques and methods, which are used in obligatory fashion from laboratories in the residue control. Directive 96/23/EC sets forth performance characteristics, limits and criteria that should be fulfilled from techniques and methods chosen to be used.

The council decision 657/2002/EC (27), which supplements the directive 96/23/EC, defines with exactness the performance characteristics of analytical techniques and methods that can be used as confirmatory

**Table 1.** Allowed residue limits of TCs in different target tissues in the EU and USA

| Pharmacologically active substances | Marker residue                    | Animal species                                                                                      | MRLs<br>( $\mu\text{g}/\text{kg}$ or ppb)     | Target issues |
|-------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|
| European Union                      |                                   |                                                                                                     |                                               |               |
| Tetracycline                        | Sum of parent drug and its epimer | All food-producing species                                                                          | 600                                           | Kidney        |
| Oxytetracycline                     |                                   |                                                                                                     | 300                                           | Liver         |
| Chlortetracycline                   |                                   |                                                                                                     | 100                                           | Muscle        |
|                                     |                                   |                                                                                                     | 100                                           | Milk          |
|                                     |                                   |                                                                                                     | 200                                           | Eggs          |
| USA                                 |                                   |                                                                                                     |                                               |               |
| Pharmacologically active substances | Marker residue                    | Animal species                                                                                      | Tolerances<br>( $\text{mg}/\text{kg}$ or ppm) | Target issues |
| Tetracycline                        | Sum of the three TCs              | Beef cattle, dairy cattle, calves, swine, sheep, chickens, turkeys, catfish, lobster, and salmonids | 12                                            | Kidney        |
| Oxytetracycline                     |                                   |                                                                                                     | 6                                             | Liver         |
| Chlortetracycline                   |                                   |                                                                                                     | 2                                             | Muscle        |
|                                     |                                   |                                                                                                     | 3                                             | Milk          |
|                                     |                                   |                                                                                                     | 12                                            | Fat           |

methods in residue control of foodstuffs of animal origin. These techniques are liquid chromatography (LC) and gas chromatography (GC) coupled with mass or infrared spectroscopy (MS or IR) for substances included in group A, while for substances in group B, LC with ultraviolet, diode array and fluorescence detectors can also be used. Specificity, precision, robustness, stability, recovery, linearity, reproducibility, limit of decision and limit of detection are some of the performance criteria that should be examined (28).

Unlike in the European Union, veterinary drugs are regulated in the United States as two distinct assemblies, one including drugs for therapeutic purposes and one for growth-promotion purposes. So, certain antimicrobials, including tetracyclines, are approved by FDA (Food and Drug Administration) for growth promotion in "subtherapeutic" doses and infections therapy (29). The Union of Concerned Scientists (UCS) estimates that approximately 24 million pounds, or 70% of antibiotics in the United States are routinely placed in the feed and water of healthy livestock. More than half of these drugs are identical or nearly identical to antibiotics routinely

used for humans. The Institute of Medicine (IOM) estimates that about 20 million pounds of antimicrobials are given to farm animals each year and about 80% of these are used for nontherapeutic reasons. Tetracyclines possess about 30% of the total use of antibiotics in animal husbandry (30).

Concerns about antibiotic overuse in veterinary medicine and animal livestock are widespread and well founded in the United States the last decade, as the problem of resistant bacterial strains increases. In recent years, Federal Legislation was introduced to deal with this problem. "The Preservation of Antibiotics for Human Treatment Act of 2002," has been introduced in the U.S. Senate and House, in order to restrict antibiotics use as additives to animal feed. This is also supported by the American Medical Association, the American Public Health Association, the American College of Preventive Medicine and numerous other health organizations. This decision would withdraw federal approval for nontherapeutic agricultural use of eight named antimicrobials or classes of antimicrobials: penicillins, tetracyclines, macrolides, lincomycin, bacitracin, virginiamycin, aminoglycosides, and sulfonamides (29).

To protect the public, the Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA), through its Food Safety and Inspection Service (FSIS), cooperate in a program to monitor the use of these animal drugs, identify improper use and take action to prevent future illegal use by a producer. FDA establishes tolerances to include a safety factor to assure that the drug will have no harmful effects on consumers of the food product. The Agency first determines the level at which the drug does not produce any measurable effect in laboratory animals. From this, an acceptable daily intake (ADI), the drug tolerance and withdrawal times are determined so that the concentrations of drug residues in edible tissues are below the ADI. Depending on the drug, "safety factors" of between 100-fold to 2,000-fold are included in the calculations used to set the tolerances (31).

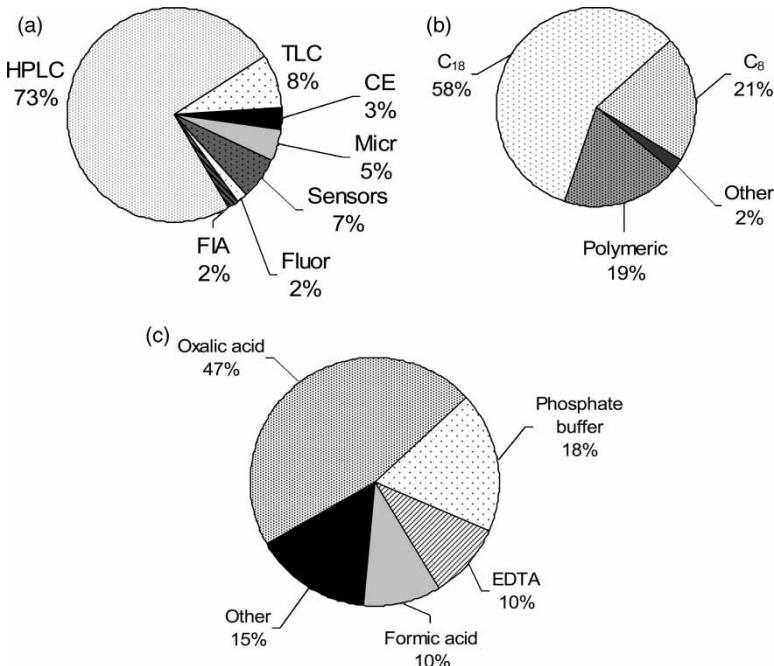
According to the valid legislation, which was last revised at 1998, tolerances established for TCs are: (a) acceptable daily intake (ADI). The ADI for total residues of tetracyclines including chlortetracycline, oxytetracycline, and tetracycline is 25 µg per kg of body weight per day; (b) for beef cattle, dairy cattle, calves, swine, sheep, chickens, turkeys, catfish, lobster, and salmonids, tolerances are established for the sum of residues of the tetracyclines including chlortetracycline, oxytetracycline, and tetracycline, in tissues and milk as follows: 2 ppm in muscle, 6 ppm in liver, 12 ppm in fat and kidney, 0.3 ppm in milk (32, 33).

The USDA regularly monitors tissue samples from slaughtered animals for many individual chemical compounds including: antimicrobials (sulfonamides, penicillins, streptomycin, tetracyclines, erythromycin, neomycin, gentamicin, and tylosin), other drugs (coccidiostats, growth promoters, anti-parasitics) and pesticides and industrial chemicals (chlorinated hydrocarbon pesticides, organophosphates). The main goal of the USDA's National Residue Program is to protect consumers from adulterated meat and poultry

products. The program is divided into three major activities: Monitoring, Surveillance, and Exploratory phases (31). Maximum residue limits (MRLs) in Japan have been established for OTC, TC, and CTC of 0.2–1.2 µg/g in edible animal tissues being their sum (34).

## ANALYTICAL METHODOLOGY

Figure 3a shows the frequency at which the different analytical techniques are applied to the TC's analysis. HPLC is the technique that is used at most (~80%) for the determination of tetracyclines antibiotics in foodstuff of animal origin. In the following paragraphs, information on analytical methodology as well as sample preparation procedures is cited.


### HPLC Methods-Chromatographic Conditions

A common problem in the chromatographic determination of tetracyclines is that due to the presence of two ketone groups they can readily chelate to metal ions. Thus they have a tendency to bind irreversibly to the silanol groups in silica-based LC stationary phases, resulting in peak tailing. This problem has been overcome either by adding oxalic acid to the mobile phase or by using polystyrene–divinylbenzene LC columns.

As shown in Figure 3b, from the analytical columns used in applications reported in the literature, 19% are polymeric, 58% are C<sub>18</sub>, 21% are C<sub>8</sub> and only in one paper is a C<sub>16</sub> column used. Within the 48 reviewed papers that apply HPLC, gradient elution is applied to 12 papers, while isocratic elution is used in 36. By taking into consideration only the papers that separate more than 2 analytes which are 39, only 10 involve a gradient program, and the rest apply isocratic elution.

Almost half of the proposed methods involve the use of oxalic acid in the mobile phase, 18% use phosphate buffer, 10% formic acid and 10% EDTA (as illustrated in Figure 3c). An internal standard is used only in the 15% of the reviewed papers. The chromatographic conditions found in the literature for the determination of tetracyclines are cited in brief in the next paragraphs. Table 2 provides all information extracted from the reviewed papers. An end-capped LiChrospher RP-8, 5 µm analytical column was used for the determination of TC, CTC, OTC and DC, with 7% acetic acid-ACN (35:65 v/v) as the mobile phase (35).

A LiChrospher RP-18, 5 µm, analytical column was used with 0.02 M orthophosphoric acid (pH 2.3) and ACN (76:24 v/v) for OTC determination (36). The same column has been used with 0.01 M oxalic acid-ACN (50:50 v/v) for the determination of TC and ETC, with 1% H<sub>3</sub>PO<sub>4</sub>/ACN (65:35 v/v) for ATC-EATC (37) and with 1% H<sub>3</sub>PO<sub>4</sub>/ACN (75:25 v/v) for OTC (38). The use of 0.01 M oxalic acid-ACN (60:40 v/v) was applied for



**Figure 3.** (a) Percentage distribution of analytical techniques used for tetracyclines determination. (b) Analytical columns used in TCs analysis. (c) Mobile phases used in TCs analysis.

the separation of TC, CTC, ETC and ECTC (38). A mixture of H<sub>2</sub>O/ACN/70% HClO<sub>4</sub>, 0.6 mM Na<sub>2</sub>EDTA, 5 mM oxalic acid (699:298.5:2.5 v/v/v) (pH 2.5) was used for DC determination using DMC as internal standard (39). The separation of OTC, TC, CTC, epimers (40) as well as TC, CTC and epimers (41) was achieved on this column with 0.01 M oxalic acid-ACN (50:50 v/v) as the mobile phase.

A Hypersil ODS, 5  $\mu$ m, analytical column operated at 22°C, was used with 0.05 M sodium dodecyl sulphate/5% 1-butanol (pH 3) for the separation of OTC, TC, CTC, DC, MNC, and epimers (42), as well as with 0.05 M NaH<sub>2</sub>PO<sub>4</sub> (pH 2.2)/ACN (78:22 v/v) for the determination of TC, OTC, CTC, DC and MTC (43). A mixture of ACN/THF/0.01 M oxalic acid (pH 3) (15:3:82 v/v/v) was used for the determination of OTC using TC as internal standard (44). TC was analysed on the same column with: ACN/1 M imidazol buffer with 10 mM Na<sub>2</sub>EDTA and 50 mM magnesium acetate (10:90 v/v) (45).

An end-capped LiChrosorb RP-18, 10  $\mu$ m, analytical column was used with 0.05 M diethanolamine (pH 7.3 with phosphoric acid) with a mobile phase consisted of 0.001 M Na<sub>2</sub>EDTA/isopropanol (86:14 v/v) for the separation of TC, OTC and CTC (46) and with 0.01 M oxalic acid/CH<sub>3</sub>OH /ACN

**Table 2.** Overview of HPLC methods for the determination of tetracyclines in foodstuffs of animal origin

| Analytes            | Sample  | Sample preparation                                                                                                                                                                                                                                                    | Chromatography                                                                                                                                                                     | Detection | Linear range                                                     | Recovery (%)                                                                                                                                                                                                                                                                                                                                                                                                              | Ref  |
|---------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TC, OTC,<br>CTC, DC | Liver   | Extr. with 0.1 M Na <sub>2</sub> -<br>EDTA/McIlvaine buff.<br>(pH 4), homog., centr.,<br>filt., residue extr. $\times$ 2<br>with Na <sub>2</sub> EDTA/McIl-<br>vaine buff. SPE of<br>combined extracts on<br>C <sub>18</sub> Baker cartridges                         | LiChrosorb RP-18, 10 $\mu$ m<br>El: 0.01 M oxalic acid/<br>CH <sub>3</sub> OH/ACN<br>(2.5:1:1.5 v/v/v), pH 2<br>FR: 2 mL/min                                                       | UV 350 nm | LOD: 0.05 ng/ $\mu$ L for<br>OTC, TC 0.1 ng/ $\mu$ L for CTC, DC | Chicken: OTC: 86, TC: 81, (47)<br>CTC: 81, DC: 72; Bovine<br>kidney: OTC: 91, TC:<br>86, CTC: 92, DC: 85;<br>Pork kidney: OTC: 89,<br>TC: 86, CTC: 86, DC:<br>72; Bovine muscle:<br>OTC: 92, TC: 87, CTC:<br>93, DC: 72; Pork muscle:<br>OTC: 93, TC: 90, CTC:<br>90, DC: 72; Milk: OTC:<br>87, TC: 83, CTC: 85,<br>DC: 72; Egg: OTC: 82,<br>TC: 80, CTC: 88, DC:<br>72; Yellow tail: OTC: 91,<br>TC: 88, CTC: 93, DC: 72 |      |
| TC, OTC,<br>CTC     | Tissues | Extr. with 0.02 N HCl-<br>0.1 M Na <sub>2</sub> EDTA, heat<br>98°C, homog., centr.,<br>cool in ice, filt., add. of<br>0.002 N HCl, heat 98°C,<br>cool, centr., add. of<br>CH <sub>2</sub> Cl <sub>2</sub> , homog., filt.<br>evap., recon. with<br>CH <sub>3</sub> OH | LiChrosorb RP-18, 10 $\mu$ m,<br>endc. El: 0.05 M dietha-<br>nolamine (pH 7.3 with<br>phosphoric acid) with<br>0.001 M Na <sub>2</sub> EDTA/<br>IPA (86: 14 v/v) FR:<br>1.5 mL/min | UV 254 nm |                                                                  | OTC: Beef liver-muscle:<br>50–70; Beef kidney:<br>75–85; CTC: Turkey<br>liver: 13–21; Turkey<br>muscle: 23–32; TC:<br>Beef liver: 41–51;<br>Muscle: 27–34; Kidney:<br>34–41; Turkey liver-<br>muscle: 70–95                                                                                                                                                                                                               | (46) |

*(continued)*

**Table 2.** Continued

| Analytes                                 | Sample                     | Sample preparation                                                                                                                                                                                                                                                                                                                  | Chromatography                                                                                                                                                                   | Detection | Linear range                                            | Recovery (%)                                                                              | Ref  |
|------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|------|
| TC, OTC,<br>CTC, DC,<br>MTC, DMC,<br>MNC | Honey                      | Extr. with 0.1 M Na <sub>2</sub><br>EDTA/McIlvaine buff.<br>(pH 4), homog., centr.,<br>filt., SPE C <sub>18</sub> , SPE,<br>-COOH cartridges                                                                                                                                                                                        | Chemosorb C <sub>8</sub> , 3 $\mu$ m;<br>El: 0.01 M oxalic acid/<br>CH <sub>3</sub> OH/ACN<br>(16:3:2 v/v/v), pH 3<br>FR: 1 mL/min                                               | UV 350 nm |                                                         | OTC: 92.8, TC: 91.7, CTC: (71)<br>99.6, MTC: 83.7, DC:<br>97.0, DMC : 87.8,<br>MNC : 85.7 |      |
| CTC                                      | Poultry/<br>swine<br>feeds | Extr. with 4 N HCl-<br>acetone-H <sub>2</sub> O (1: 8: 6v/<br>v/v), homog., centr.,<br>filt., SPE C <sub>18</sub> Clean-up<br>for CTC: add. of water<br>saturated with CH <sub>2</sub> Cl <sub>2</sub> ,<br>homog., add. of CH <sub>2</sub> -<br>Cl <sub>2</sub> saturated with water,<br>homog., centr., filt. of<br>aqueous layer | Nova-Pack C <sub>18</sub> El: 0.01 M<br>oxalic acid/CH <sub>3</sub> OH/<br>ACN (3.5:1.5:1 v/v/v),<br>pH 2 with HCl<br>(60:40)FR: 1 mL/min                                        | UV 370 nm |                                                         | Premix: 94.6; Ruminant<br>feed: 74.8–83.2;<br>Poultry/swine feed:<br>70.5–82.9            | (57) |
| TC, OTC,<br>CTC,                         | Milk                       | Milk samples centr. Using<br>M.W. cutoff system,<br>SPE, C <sub>18</sub> varian                                                                                                                                                                                                                                                     | Novapack C <sub>18</sub> , 5 $\mu$ m;<br>El: 0.05 M oxalic acid/<br>ACN/CH <sub>3</sub> OH<br>(30:50:20 v/v/v) and<br>0.05 M oxalic acid/<br>ACN (40:60 v/v). FR:<br>0.5 mL/min. | PB-MS/MS  | LOD: Standards<br>20 ng, Milk<br>samples: 100 ng/<br>mL |                                                                                           | (59) |

## Analysis of Tetracyclines in Foods

|                                 |                               |                                                                                                                                                                           |                                                                                                                                                                                         |           |                                                                                                                |                                                                                  |      |
|---------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------|
| OTC                             | 3 Species of marine shellfish | Extr. with 0.1 M $\text{Na}_2\text{EDTA}$ /McIlvaine buff. (pH 4), vortex, centr., filt., SPE $\text{C}_{18}$ , recon. 0.1 M perchloric acid, centr., filt.               | LiChrospher RP-18, 5 $\mu\text{m}$ ; El: 0.02 M orthophosphoric acid (pH 2.3)–ACN (76:24 v/v) FR: 1.2 mL/min                                                                            | UV 355 nm | LR: 0.1–1.5 $\mu\text{g/g}$                                                                                    | 79.8                                                                             | (36) |
| TC, OTC, CTC                    | Bovine, porcine muscle        | Extr. with 0.1 M $\text{Na}_2\text{EDTA}$ /McIlvaine buff. (pH 4) (4°C), homog., centr. (4°C), add. Of TCA (1 g/mL), homog., filt., SPE, Sep-Pack $\text{C}_{18}$ , endc. | Nova-Pack $\text{C}_{18}$ , 4 $\mu\text{m}$ ; El: 0.01 M citric acid–0.01 $\text{MK}_2\text{HPO}_4$ /ACN (72:28 v/v) with 0.005 M TMA chloride, 0.1 g/LEDTA. FR: 2.4 mL/min             | UV 365 nm | LOD: 10 ng/g                                                                                                   | Calf: OTC: 70, TC: 58, CTC: 50                                                   | (56) |
| TC, OTC, CTC, DC, MTC, DMC, MNC | Milk                          | Centr. (10°C), lower layer Extr. with succinate buff. (pH 4), homog., centr., filt., MCAC, ultrafilt.,                                                                    | PLRP-S 5 $\mu\text{m}$ ; El: 0.01 M oxalic acid/ $\text{CH}_3\text{OH}$ /ACN. Grad.el.: 0–1 min 100:0:0 v/v/v, from 1–5 min to 70:8:22 v/v/v, from 5–11 min 70:8:22 v/v/v. FR: 1 mL/min | UV 355 nm | LOD: 0.42–1.27 ng/mL                                                                                           | OTC: 82–91, TC: 70–79, CTC: 66–80, MTC: 65–75, DC: 72–79, DMC: 69–81, MNC: 63–37 | (79) |
| TC, OTC, CTC, DC, MTC, DMC      | Kidney                        | Extr. with 0.05 M succinate buff./3.7% $\text{Na}_2\text{EDTA}$ (pH 4), vortex, centr., filt., MCAC, SPE ( $\text{C}_{18}$ )                                              | Chromspher $\text{C}_8$ , 5 $\mu\text{m}$ ; El: 0.01 M oxalic acid–ACN (80:20 v/v) FR: 0.8 mL/min                                                                                       | UV 365 nm | LR: 0.03–3 $\mu\text{g/mL}$ ; LOD: 4 $\mu\text{g/mL}$ for OTC and TC 12 $\mu\text{g/mL}$ for CTC, DC, MTC, DMC | OTC: 59–73, TC: 44–53, CTC: 56–67, MTC: 50–71, DC: 48–77, DMC: 49–65             | (69) |

(continued)

**Table 2.** Continued

| Analytes          | Sample         | Sample preparation                                                                                                                                                                                                                  | Chromatography                                                                                                                                                                                                                     | Detection                                                                                                         | Linear range                              | Recovery (%)                                                                                                                                        | Ref  |
|-------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TC, OTC           | Tissue samples | Extr. with 10 mM, Na <sub>2</sub> EDTA/McIlvaine (pH 4)/CH <sub>3</sub> OH (3:7), centr., residue re-Extr. and extr. combined and evap. to 50 mL. SPE with C <sub>18</sub> and SCX cartridges, Eluate adj. pH to 13 with 10 M NaOH. | ODP-50, 5 µm, 40°C; El: Sorensen buff. (pH 12)/ACN (90:10v/v).FR: 1 mL/min                                                                                                                                                         | FL (from $\lambda_{exc}$ 350 nm, $\lambda_{em}$ 420 nm to $\lambda_{exc}$ 374 nm, $\lambda_{em}$ 506 nm in 7 min) | 2–40 ng for OTC1–40 ng for TC             | Bovine: OTC: 80–82, TC: 79–87; Swine: OTC: 74–86, TC: 72–74; Chicken: OTC: 63–75, TC: 62–70                                                         | (81) |
| OTC               | Fish Feed      | Extr. with ethyl acetate, addit. of 0.01 M EDTA, evap. of organic layer, centr., SPE C <sub>18</sub>                                                                                                                                | Hypersil ODS 5 µm ACN/THF/0.01 M oxalic acid (pH 3) (15:3:82 v/v/v). FR: 1 mL/min I.S.: TC                                                                                                                                         | UV 365 nm                                                                                                         | 0.1–6.4 µg/g<br>LOD: 10 ng/g              | 93.6–98.1                                                                                                                                           | (44) |
| TC, OTC, CTC, DMC | Animal tissues | Extr. with 0.1 M succinate buff. (pH 4), homog., centr., filt., dilut. With SEPSA sol. SPE C <sub>8</sub> or XAD-2 resins and on-line MCAC                                                                                          | PLRP-S 5 µm; El: A: 0.1 M NaH <sub>2</sub> PO <sub>4</sub> –0.01 M Citric acid–0.01 M EDTA. B: ACN-CH <sub>3</sub> OH-A (25:10:65 v/v/v) Grad. El. from 100% A to 100% B in 10 min and then is. el. 100% B for 10 min FR: 1 mL/min | UV 350 nm                                                                                                         | LOD: OTC, TC: 10 µg/kg CTC, DMC: 20 µg/kg | SPE C <sub>18</sub> : Sheep liver: OTC: 58–83, TC: 50–86, CTC: 36–65, DMC: 40–60XAD-2: Cattle kidney: OTC: 64–69, TC: 61–89, CTC: 59–88, DMC: 44–58 | (77) |

|                                              |                       |                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                                    |                                                                                      |                                                                                                                                                                 |      |
|----------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CD                                           | Turkey plasma         | Extr. with 6% w/v ascorbic acid and phosphate sulphite buff. (pH 6) and ethyl acetate, vortex, centr. Addit. in org. layer 0.2% w/v ascorbic acid, evap., recons. in MP, add. of hexane, centr., aqueous layer | LiChrospher RP-18, 5 $\mu$ m; El: H <sub>2</sub> O/ACN/70% HClO <sub>4</sub> , (699:298.5:2.5 v/v/v), 0.6 mM Na <sub>2</sub> EDTA, 5 mM oxalic acid (pH 2.5). FR: 1 mL/minI.S.: DMC | UV 350 nm                                                          | 0.2–600 $\mu$ g/mL; LOD: 0.2 $\mu$ g/mL                                              | 66.1–72.3                                                                                                                                                       | (39) |
| OTC, EOTC, $\alpha$ -apoOTC, $\beta$ -apoOTC | Porcine muscle, water | Extr. with 0.1 M Na <sub>2</sub> EDTA/McIlvaine buff. (pH 4), homog., centr., filt., SPE C <sub>18</sub> Bond Elut.                                                                                            | Inertsil C <sub>8</sub> , 5 $\mu$ m; El: 0.1 M ammonium acetate (pH 3)/ACN/THF (72.5:12.5:15 v/v/v)FR: 1 mL/min                                                                     | DAD 350 nm for OTC, EOTC 250 nm for $\alpha$ - and $\beta$ -apoOTC | OTC: 40 ng/mL, EOTC: 20 ng/mL, $\alpha$ -apoOTC:50 ng/mL, $\beta$ -apoOTC: 140 ng/mL | Water: OTC: 90–99, EOTC: 66–83, $\alpha$ -apoOTC: 66–83, $\beta$ -apoOTC: 58–84; Muscle: OTC: 70–84, EOTC: 49–62, $\alpha$ -apoOTC: 26–40, $\beta$ -apoOTC: <20 | (68) |
| TC                                           | Swine tissues         | Extr. with ACN/1 M imidazol buff. with 10 mM Na <sub>2</sub> EDTA and 50 mM magnesium acetate (15:85v/v) and hexane, vortex, centr., evap., ultrafilt                                                          | Hypersil ODS 5 $\mu$ m; El: ACN/1 M imidazol buff. with 10 mM Na <sub>2</sub> EDTA and 50 mM magnesium acetate (10: 90v/v). FR: 1 mL/min                                            | FL ( $\lambda_{exc}$ 380 nm, $\lambda_{em}$ 520 nm)                | 1.25–20 ngLOD: 0.04 $\mu$ g/gLOQ: 0.05 $\mu$ g/g                                     | Muscles: 58–67; Kidney ; 57–66                                                                                                                                  | (45) |

## Analysis of Tetracyclines in Foods

(continued)

**Table 2.** Continued

| Analytes            | Sample                                | Sample preparation                                                                                                                                                                                                                      | Chromatography                                                                                                                                                                                                                                                                                                                         | Detection                                                                                                                                           | Linear range                                                                                                 | Recovery (%)                                                                                                                                                                                             | Ref  |
|---------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TC, OTC,<br>CTC, DC | Eggs,<br>animal<br>tissues            | Extr. with 0.1 M sodium<br>succinate buff. (pH 4),<br>homog., add. of 20 mL<br>CH <sub>3</sub> OH, votr., centr.,<br>filt. MCAC and extr.<br>with SDB-RPS cation<br>exchange membranes                                                  | PLRP-S 8 $\mu$ m; El: 0.01 $\mu$<br>oxalic acid-ACN.<br>Grad. El. from<br>85:15 v/v to 60:40 v/v.<br>FR: 1 mL/min                                                                                                                                                                                                                      | FL ( $\lambda_{\text{exc}}$ 406 nm,<br>$\lambda_{\text{em}}$ 515 nm).<br>Post-column<br>addition of 5%<br>(m/v) zirconyl<br>chloride<br>octahydrate | OTC: 2–1000 $\mu$ g/kg,<br>TC: 3–1000 $\mu$ g/<br>kg, CTC:<br>4–1000 $\mu$ g/kg,<br>DC:<br>5–1000 $\mu$ g/kg | Eggs: OTC: 50 TC: 45,<br>CTC: 37, DC: 53; Pork<br>kidney: OTC: 60, TC:<br>45, CTC: 46, DC: 58;<br>Pork muscles: OTC: 69,<br>TC: 54, CTC: 53, DC: 66<br>Bovine liver: OTC: 58,<br>TC: 39, CTC: 42, DC: 53 | (75) |
| TC, OTC,<br>CTC     | Animal<br>tissues,<br>Milk,<br>cheese | Extr. with 0.1 M Na <sub>2</sub><br>EDTA/McIlvaine buff.<br>(pH 4), vortex, centr.,<br>filt., residues twice re-<br>extr. combined super.<br>Extr. with SPE, C <sub>18</sub><br>cartridges or for milk<br>MSPD, C <sub>18</sub> sorbent | LiChrosorb RP-18El:<br>0.01 M oxalic acid-<br>CH <sub>3</sub> OH-ACN<br>(65:17.5:17.5 v/v/v)<br>FR: 1.4 mL/min                                                                                                                                                                                                                         | UV-DAD<br>SPE: 15–22 ng/ $\mu$ L.<br>MSPD: 30 ng/ $\mu$ L                                                                                           |                                                                                                              | Tissues: OTC: 86–90, TC:<br>62–67, CTC: 52–66.<br>Cheese: OTC: 52–65,<br>TC: 45–47, CTC: 59–66.<br>Milk (SPE) OTC: 53, TC:<br>52, CTC: 51 (MSPD),<br>OTC: 79–93, TC: 74–<br>89, CTC: 56–68               | (48) |
| OTC, TC<br>CTC      | Tissues                               | Extr. with Glycine-HCl<br>buff., homog., add<br>ammonium sulphate,<br>homog., centr., filt.,<br>residue re-Extr., SPE,<br>cyclohexyl endc.                                                                                              | Prodigy C <sub>18</sub> , 2 $\mu$ m. El: A:<br>CH <sub>3</sub> CN/0.01 $\mu$ oxalic<br>acid, 0.01 mM EDTA,<br>0.04% HFBA (10:90)<br>B: CH <sub>3</sub> CN/0.01 $\mu$ oxalic<br>acid, 0.01 mM EDTA,<br>0.04% HFBA (90:10).<br>Grad. El.: 0 min 10% B,<br>10 min 50% B, 11 min<br>90% B, 14 min 90% B,<br>16 min, 10% B. FR:<br>1 mL/min | APCI-MS/MS                                                                                                                                          | Muscles: 10 ng/g;<br>Kidney: 20 ng/g                                                                         | Muscle: OTC: 58–96, TC:<br>52–87, CTC: 60–99;<br>Kidney: OTC: 57–112,<br>TC: 61–101, CTC:<br>61–83                                                                                                       | (62) |

## Analysis of Tetracyclines in Foods

|                      |                                   |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |           |                                                                                                                                                                            |
|----------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OTC, TC<br>CTC       | Bovine<br>tissues                 | Extr. with 0.1 M Na <sub>2</sub><br>EDTA/McIlvaine buff.<br>(pH 4) × 3, homog.,<br>centr., filt., SPE C <sub>18</sub><br>Bond Elut.                                                                                                                                                                                                                                  | TSK Gel Super C <sub>8</sub> ,<br>2 µm. El: ACN/0.05%<br>TFA (1:4 v/v).<br>FR: 0.5 mL/min                                                                                                                                                               | ESI-MS/MS | Liver: OTC: 73.8, TC: 70.3, (73)<br>CTC: 61.7, DC: 55.5;<br>Kidney: OTC: 75.5, TC:<br>71.3, CTC: 64.9, DC:<br>58.1; Muscle: OTC: 79.0,<br>TC: 79.1, CTC: 73.0,<br>DC: 69.9 |
| TC, OTC,<br>CTC, DMC | Eggs,<br>animal<br>tissues        | Extr. with 1 M citrate buff.<br>pH 4 (for chicken liver<br>only) or 5 and ethyl<br>acetate, homog., vortex,<br>centr., residue re-<br>extr. × 2 with ethyl<br>acetate (2 × 12 mL)<br>combined extr.: filt.,<br>evap. to dryness (40°C)<br>and recon. with CH <sub>3</sub> OH.<br>Direct inj. and on-line<br>MCAC on a Anagel-<br>TSK precolumn.<br>Column switching. | PLRP-S 5 µm; El: A:<br>0.1 M NaH <sub>2</sub> PO <sub>4</sub> –<br>0.01 M Citric acid–<br>0.01 M EDTA.B:<br>ACN- CH <sub>3</sub> OH-A<br>(25:10:65 v/v/v) Grad.<br>El. from 100% A to<br>100% B in 10 min. Is.<br>El. 100% B for 10 min<br>FR: 1 mL/min | UV 350 nm | OTC: 10–100 µg/kg; TC:<br>16–100 µg/kg. CTC:<br>20–10 µg/kg.<br>Eggs: OTC: 91–104, TC: (74)<br>TC, DMC: 16–64–59, CTC: 59–77,<br>DMC: 66–105                               |
| MNC                  | Bovine<br>tissues<br>and<br>serum | Tissues: Extr. with H <sub>2</sub> O,<br>homog., cent. SPE<br>C <sub>18</sub> Serum add. of ACN,<br>centr., filt., SPE C <sub>18</sub>                                                                                                                                                                                                                               | µ-Bondapak C <sub>18</sub> 5 µm;<br>El: 100% CH <sub>3</sub> OH. FR:<br>1 mL/min                                                                                                                                                                        | UV 350 nm | LOD: 100 ng/µL<br>Tissues: 61; Serum: 54 (52)                                                                                                                              |

*(continued)*

**Table 2.** Continued

| Analytes                         | Sample                      | Sample preparation                                                                                                                                                                     | Chromatography                                                                                                                                                                                                                                                                                              | Detection                                                                                                                                                                                                                                                  | Linear range                                                                                                                 | Recovery (%)                                                                                                                                                                                                                                    | Ref  |
|----------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| OTC, TC,<br>CTC                  | Animal<br>tissues           | Extr. with 1 M oxalic acid<br>and ACN, homog.,<br>addit. of oxalate buff.,<br>homog., centr., filt.,<br>SPE, SDB cartridges                                                            | PLRP-S 5 $\mu$ m; El: 0.01 M<br>oxalic acid-ACN<br>(50:50 v/v)FR:<br>0.9 mL/min                                                                                                                                                                                                                             | UV 360 nm                                                                                                                                                                                                                                                  | 20–1000 ng/g; LOD:<br>Tissues: OTC, TC:<br>10 ng/g, CTC:<br>15 ng/g. Kidney,<br>liver: OTC, TC:<br>20 ng/g, CTC:<br>25 ng/g. | Bovine: Tissues: OTC: 83,<br>TC: 82; CTC: 82; Liver:<br>OTC: 85, TC: 83 CTC: 82;<br>Kidney: OTC: 84, TC: 82,<br>CTC: 81; Pork: Tissues:<br>OTC: 83, TC: 83, CTC:<br>84; Liver: OTC: 84, TC:<br>82, CTC: 81; Kidney:<br>OTC: 84, TC: 85, CTC: 83 | (78) |
| TC, OTC,<br>CTC, DC              | Pork and<br>chicken<br>meat | Extr. with 0.1 M sodium<br>succinate buff. (pH 4),<br>homog., add. of 20 mL<br>CH <sub>3</sub> OH, votr., centr.,<br>filt. MCAC and Extr.<br>with SDB-RPS cation<br>exchange membranes | PLRP-S 8 $\mu$ m; El: 0.01 M<br>oxalic acid-ACN. Grad.<br>El. from 85:15 to<br>60:40 v/v in 16 min. FR:<br>1 mL/min, IS : DMC;<br>For MS: Symmetry C <sub>18</sub><br>5 $\mu$ m, El: A: CH <sub>3</sub> OH/<br>0.069% TFA (30:70)<br>Grad. El. from 100% A<br>to 100% CH <sub>3</sub> OH. FR:<br>0.3 mL/min | FL ( $\lambda_{exc}$ 350 nm, $\lambda_{em}$ 420 nm).<br>Post-column<br>addition of 5%<br>m/v zirconyl<br>chloride<br>5 $\mu$ m, El: A: CH <sub>3</sub> OH/<br>0.069% TFA (30:70)<br>Grad. El. from 100% A<br>to 100% CH <sub>3</sub> OH. FR:<br>0.3 mL/min | LOD:<br>0.42–1.38 $\mu$ g/kg                                                                                                 |                                                                                                                                                                                                                                                 | (49) |
| TC, OTC,<br>CTC, DC,<br>DMC, MNC | Milk,<br>shrimps            | Milk samples<br>Extr. with<br>acetic acid, homog.,<br>centr. Shrimp samples<br>Extr. with 0.1 M succi-<br>nic acid (pH 4), homog.,<br>centr., MCAC, SPE,<br>supelclean ENVI            | PLRP-S, 5 $\mu$ m; El: 0.01 M<br>oxalic acid/CH <sub>3</sub> OH<br>(58: 42 v/v)FR:<br>0.5 mL/min                                                                                                                                                                                                            | PB-MS                                                                                                                                                                                                                                                      | ~50                                                                                                                          |                                                                                                                                                                                                                                                 | (80) |

## Analysis of Tetracyclines in Foods

|                                               |         |                                                                                                                         |                                                                                                                                                                                               |            |                                                                |                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TC, OTC,<br>CTC, DC                           | Tissues | Extr. with 0.1 M Na <sub>2</sub> EDTA/McIlvaine buff. (pH 4) × 3, homog., centr., filt., SPE C <sub>18</sub> Bond Elut. | Bakerbond C <sub>8</sub> , 5 µm (30°C). El: 0.01 M oxalic acid/CH <sub>3</sub> OH/ACN (55: 27:18 v/v/v), pH 2FR: 1 mL/min                                                                     | APCI-MS/MS | LOD: 0.001 ppm OTC, TC 0.004 ppm CTC, 0.002 ppm DC             | Bovine liver: OTC: 61–67, (72) TC: 72–78, CTC: 65–72, DC: 60–65; Kidney: OTC: 68–77, TC: 67–78, CTC: 66–70, DC: 64–72; Muscle: OTC: 67–83, TC: 74–81, CTC: 63–73, DC: 69–72; Swine liver: OTC: 67–73, TC: 68–78, CTC: 63–79, DC: 62–70; Kidney: OTC: 72–80, TC: 77–80, CTC: 70–78, DC: 68–70; Muscle: OTC: 80–82, TC: 74–80, CTC: 67–84, DC: 70–72 |
| TC, OTC,<br>DMC,<br>MNC, ATC,<br>EATC,<br>MTC | Milk    | Stirring and heating samples (65°C), sat.with KCl (only for water samples), SPME, 50 µm Carbowax/templated resins       | Purosphere RP-18, 3 µm; El: (A) ACN with 0.2% HCOOH and (B) H <sub>2</sub> O with 0.2% HCOOH. Grad. El.: 0 min 16: 84 v/v, 1.5 min 24: 76 v/v, 2 min 30:70 v/v, 7 min 50:50 v/v. FR: 1 mL/min | ESI-MS/MS  | LOD: TC: 14, OTC: 30, DMC: 9, MNC: 40, ATC: 4, EATC: 4, MTC: 6 | TC: 25, OTC: 20, DMC: 57, (58) MNC: 17, ATC: 92, EATC: 31, MTC: 60 6 ng/mL; Milk: 100 ppb                                                                                                                                                                                                                                                          |

(continued)

**Table 2.** Continued

| Analytes                                                         | Sample            | Sample preparation                                                                                                                                                                 | Chromatography                                                                                                                                                                   | Detection                                                                                                                                                     | Linear range                                                                                                     | Recovery (%)                                                                                                                                                                                                                       | Ref  |
|------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TC, CTC,<br>ETC, ECTC                                            | Animal<br>bones   | Extr. with 1 M HCl for<br>10 h, homog., centr.,<br>residue re-extr. with<br>1 M HCl. Super. filt.,<br>XAD-2 resins                                                                 | LiChrospher RP-18, 5 $\mu$ m;<br>El: 0.01 M oxalic acid–<br>ACN (60:40 v/v) FR:<br>0.4 mL/min                                                                                    | UV-DAD,<br>360 nm.                                                                                                                                            |                                                                                                                  |                                                                                                                                                                                                                                    | (38) |
| TC, OTC,<br>CTC, ICTC,<br>N-DMCTC,<br>N-DMOTC,<br>4-N-<br>DMICTC | Eggs              | Extr. with 0.3 M sodium<br>citrate buff., vortex,<br>centr., on-line dialysis,<br>on-line SPE, PLRP – S<br>70 $\mu$ m                                                              | Supersphere RP-8, 4 $\mu$ m;<br>El: 0.01 M or 0.005 M<br>oxalic acid–ACN<br>(50:50 v/v). FR: 1 mL/<br>min. For LC-MS/MS<br>El: ACN/0.5%<br>HCOOH (40:60 v/v).<br>FR: 0.4 mL/min. | UV (310 and<br>360 nm) FL<br>( $\lambda_{exc}$ 350 nm,<br>$\lambda_{em}$ 420 nm).<br>Post-column<br>addition of<br>0.4 M glycine<br>buff. pH 12.<br>ESI-MS/MS | Whole egg: 50–<br>600 $\mu$ g/kg, Egg<br>white and yolk:<br>100–600 $\mu$ g/kg,<br>Serum: 200–<br>60 $\mu$ g/kg. | Whole egg: OTC: 97, TC: 96,<br>CTC: 91, ICTC: 98;<br>Egg white: OTC: 96, TC:<br>96, CTC: 95, ICTC: 99;<br>Egg yolk: OTC: 94, TC:<br>94, CTC: 90, ICTC: 95;<br>Serum: OTC: 95, TC: 96,<br>CTC: 93, ICTC: 97                         | (70) |
| TC, OTC,<br>CTC.                                                 | Animal<br>tissues | Extr. with $H_2O$ , homog.,<br>addit. of ACN, vortex,<br>addit. of 0.1 M $H_3PO_4$ ,<br>homog., centr., filt., L/L<br>Extr. with hexane and<br>$CH_2Cl_2$ , evap. to 2 mL,<br>filt | Phenomenex ODS 3;<br>El: 4 mM oxalic acid,<br>4 mM sodium oxalate,<br>4 mM sodium dodecyl-<br>sulfonate/ACN<br>(70:30 v/v). FR:<br>1 mL/min                                      | UV 370 nm                                                                                                                                                     |                                                                                                                  | Pork tissues: OTC: 93, TC: 109,<br>CTC: 98; Pork<br>kidney: OTC: 94, TC:<br>93, CTC: 110; Pork liver:<br>OTC: 99, TC: 91, CTC:<br>95; Bovine tissues: OTC:<br>91, TC: 101, CTC: 92;<br>Bovine kidney: OTC: 98,<br>TC: 105, CTC: 92 | (50) |

## Analysis of Tetracyclines in Foods

|                       |                       |                                                                                                                                                                                       |                                                                                                                                                                                                                           |                          |                                         |                      |      |
|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|----------------------|------|
| OTC                   | Animal bones          | Extr. with 1 M HCl for 10 h, homog., centr., residue re-Extr. with 1 M HCl. Super. filt., XAD-2 resins                                                                                | LiChrospher RP-18, 5 $\mu$ m; El: 1% $H_3PO_4$ /ACN (75:25 v/v)FR: 0.7 mL/min                                                                                                                                             | UV-DAD 360 nm            | 0.05 mg/kg                              | (38)                 |      |
| TC, ETCATC, EATC      | Animal feed           | High temperature treatment after homog. in 133 and 100°C for 20, 30 and 45 min. Extr. with 1 M HCl, homog., centr., filt., adj. pH to 4 with NaOH, centr., MCAC, SPE, C <sub>18</sub> | LiChrospher RP-18, 5 $\mu$ m; El: 0.01 M oxalic acid–ACN (50:50 v/v) for TC-ETC and 1% $H_3PO_4$ /ACN (65:35 v/v) for ATC-EATC FR: 0.9 mL/min. For LC-MS/MSPuresil C <sub>18</sub> 5 $\mu$ m; El: 0.5% HCOOH/ACN (23: 77) | UV-DAD 360 nm; ESI-MS/MS | TC: 65, ETC: 63; ATC: 71, EATC: 65      | (37)                 |      |
| OTC, TC, CTC, epimers | Animal feed and bones | Extr. with succinate buff. (pH 4) or 1 M HCl, homog., centr. filt., MCAC, SPE C <sub>18</sub> .                                                                                       | LiChrospher RP-18, 5 $\mu$ m; El: 0.01 M oxalic acid–ACN (50:50 v/v) FR: 0.9 mL/min                                                                                                                                       | UV-DAD 360 nm            | LOD: OTC, TC: 0.5 and CTC: 1 $\mu$ g/kg | OTC, TC: 65; CTC: 50 | (40) |
| TC, CTC, epimers      | Animal bones          | High temperature treatment after homog. in 133 and 100°C for 20,30 and 45 min. Extr. with succinate buff. (pH 4) or 1 M HCl, homog., centr., filt., MCAC, SPE, C <sub>18</sub>        | LiChrospher RP-18, 5 $\mu$ m; El: 0.01 M oxalic acid–ACN (50:50 v/v) FR: 0.9 mL/min                                                                                                                                       | UV-DAD 360 nm            | LOD: TC: 1.5 and CTC: 5 $\mu$ g/kg      | TC: 67; CTC: 52      | (41) |

(continued)

Table 2. Continued

| Analytes                                | Sample                                         | Sample preparation                                                                                                                                                                          | Chromatography                                                                                                               | Detection                                                                                                                       | Linear range                                    | Recovery (%)                                                                                                                                                       | Ref  |
|-----------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| OTC, TC,<br>CTC, DC,<br>MNC,<br>epimers | Animal<br>feeds                                | Extr. with 1: 1 ACN/H <sub>2</sub> O<br>sol. (pH 3 with 0.01 M<br>citric acid), vortex,<br>centr., filt.                                                                                    | Hypersil ODS 5 $\mu$ m, 22°C;<br>El: 0.05 M sodium<br>dodecyl sulphate/5%<br>1-butanol (pH 3)FR:<br>1 mL/min                 | DAD 364 nm                                                                                                                      | 5–100 $\mu$ g/g; LOD:<br>0.1–0.4 $\mu$ g/g      | OTC: 52–80, TC: 64–88,<br>CTC: 66–89, MNC:<br>84–95, DC: 74–89                                                                                                     | (42) |
| TC, OTC,<br>CTC, DC                     | Bovine<br>milks and<br>muscle                  | Two step chemical extr.: 1. with 20% TCA,<br>vortex, 2. with McIl-<br>vaine buff., vortex,<br>centr., SPE, HLB Oasis                                                                        | Hypersil C <sub>8</sub> 5 $\mu$ m; El:<br>0.01 M oxalic acid–<br>CH <sub>3</sub> OH–ACN(60:25:<br>15, v/v/v)FR: 1 mL/<br>min | UV 365 nm                                                                                                                       | 0.1–5 ng/mL                                     | Milk: OTC: 91.9–93.3, TC: (65)<br>80.3–84.1, CTC: 84.0–<br>84.9, DC: 85.3–86.9;<br>Muscles: OTC: 84.3–<br>84.9, TC: 81.8–84.6,<br>CTC: 83.1–89.5, DC:<br>84.2–84.9 |      |
| TC, OTC,<br>CTC, DC                     | Milk                                           | Dil. with water 1:5 v/v;<br>SPE syringe, ISO-<br>LUTE-C8                                                                                                                                    | LiChrospher RP-8 (endc.)<br>5 $\mu$ m El: 7% acetic<br>acid-ACN(35:65 v/v)<br>FR: 1 mL/min                                   | UV 267 nm                                                                                                                       | 0.1–1 $\mu$ g/mL                                | Milk: OTC: 91.2–93.5, TC: (35)<br>90.8–95.5, CTC: 80.8–<br>87.3, DC: 81.2–88.1                                                                                     |      |
| TC, OTC, CTC<br>and their<br>4-epimers  | Eggs,<br>and their<br>environmental<br>samples | Extr. with 1 M citrate buff.<br>(pH 5), homog., addit.<br>of ACN, centr. Residue<br>re-Extr. with H <sub>2</sub> O and<br>ACN. Combined super.<br>evap., recon. with<br>CH <sub>3</sub> OH. | Puresil C <sub>18</sub> El: 0.5%<br>HCOOH, 1 mM<br>ammonium oxalate/<br>ACN (80:20 v/v).FR:<br>1 mL/min                      | Microb. assay:<br><i>S. aureus</i> in<br>brain –heart<br>broth middle<br>(pH 5.9),<br>photometrical<br>det. 595 nm<br>ESI-MS/MS | LOD: MS: 20 $\mu$ g/kg;<br>Micr: 150 $\mu$ g/kg | MS: OTC: 71–98, TC:<br>85–109, CTC: 88–90                                                                                                                          | (51) |

## Analysis of Tetracyclines in Foods

|                                   |             |                                                                                                                                                 |                                                                                                                                                                                                                                        |                                                |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TC, OTC,<br>CTC, DC,<br>4-epimers | Pig tissues | Extr. with 0.1 M succinate<br>buff. (pH 4), homog.,<br>centr., add. 20% (w/v)<br>TCA, vortex, centr.,<br>filt., SPE C <sub>8</sub> , Oasis.     | PLRP-S, 8 $\mu$ m (60°C);<br>El: 0.001 M oxalic acid,<br>0.5% (v/v) HCOOH,<br>3% (v/v) THF (A)/<br>THF(B). Grad. El.:<br>0–20 min 100% A,<br>20.1–27 min 95% A,<br>27.1–34 min 90% A,<br>34.1–40 min<br>100% AFR: 1 mL/min,<br>IS: DMC | ESI-MS/MS                                      | LOD: 0.5–4.5 ng/g                                                | Muscle: EOTC: 57, OTC: (76)<br>47, ETC: 50, TC: 53,<br>ECTC: 34, CTC: 45,<br>EDC: 38, DC: 28;<br>Skin-fat: EOTC: 40,<br>OTC: 42, ETC: 22, TC:<br>18, ECTC: 42, CTC: 45,<br>EDC: 44, DC: 37; Liver:<br>EOTC: 27, OTC: 26,<br>ETC: 24, TC: 25, ECTC:<br>23, CTC: 18, EDC: 17,<br>DC: 12; Kidney: EOTC:<br>61, OTC: 58, ETC: 54,<br>TC: 57, ECTC: 53, CTC:<br>58, EDC: 57, DC: 44 |
| TC, OTC,<br>CTC, DC,<br>MNC, MTC  | Honey       | Extr. with 0.1 M Na <sub>2</sub><br>EDTA/McIlvaine buff.<br>pH 4, vortex, centr., filt.,<br>SPE, Discovery phenyl-<br>cartridges                | Discovery RP-Amide C <sub>16</sub><br>5 $\mu$ m. El: 0.01 M oxalic<br>acid–ACN (88:12 v/v).<br>Is. el. for 9 min, change<br>into 82:18 v/v in<br>0.01 min, is. el. for<br>16 min. FR: 1 mL/min                                         | UV (270 and<br>350 nm)                         | MNC, OTC, TC:<br>50–650 ng/mL,<br>CTC, MTC, DC:<br>100–850 ng/mL | MNC: 97; OTC: 91; TC: 83; (82)<br>CTC: 81; MTC: 72;<br>DC: 91                                                                                                                                                                                                                                                                                                                  |
| TC, OTC,<br>CTC, DC,<br>MTC       | Milk        | Extr. with 1 M HCl, addit.<br>of ACN, sonic., centr.,<br>addit. of hexane, vortex,<br>evap. Until 10 mL, Dil.<br>with CH <sub>3</sub> OH, filt. | Hypersil ODS 5 $\mu$ m; El:<br>0.05 M NaH <sub>2</sub> PO <sub>4</sub> (pH<br>2.2)/ACN (78:22 v/v).<br>FR: 1 mL/min                                                                                                                    | ESA electr. Det.<br>(400, 600, 680,<br>700 mV) | LOD: OTC: 12.5,<br>TC: 20, CTC: 25,<br>MTC: 10, DC:<br>25 ng/mL  | OTC: 93–96, TC: 90–94, (43)<br>CTC: 89–93, MTC:<br>93–94, DC: 91–94                                                                                                                                                                                                                                                                                                            |

(continued)

Table 2. Continued

| Analytes            | Sample                 | Sample preparation                                                                                                         | Chromatography                                                                                                                                                            | Detection                                                                      | Linear range                                                                    | Recovery (%)                                                                          | Ref  |
|---------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------|
| TC, OTC,<br>CTC, DC | Shrimps                | Extr. with 0.1 M $H_3PO_4$ and ACN, centr., filt., liq-liq. extr. with hexane and $CH_2Cl_2$ . Aqueous layer centr., filt. | $C_{18}$ , 5 $\mu m$ ; El: 0.1 M $HH_2PO_4$ (pH 2.5 with $H_3PO_4$ )/ACN (80:20 v/v) FR: 1.5 mL/min                                                                       | Electr. Det., mixed valent Ru oxide-Ru cyanide glassy carbon electrode (1.1 V) | LOD: OTC: 0.1 ng/ $\mu L$ , TC, CTC: 0.5 ng/ $\mu L$                            | OTC: 72.5–80.0, TC: 80.0–91.5, CTC: 75.2–111.0                                        | (55) |
| CTC                 | Swine plasma and water | Prec. with ACN, vortex, centr.                                                                                             | Hypersil $C_8$ , 5 $\mu m$ ; El: ACN/0.5% HCOOH (70:30 v/v) FR: 0.5 mL/min IS: OTC                                                                                        | ESI-MS/MS                                                                      | Linear range: 20–2000 ng/mL                                                     | Swine plasma: 97.7–100.3; Water: 93.0–101.1                                           | (66) |
| TC, OTC,<br>CTC     | Shrimps milk           | Extr. with 0.1 M succinate buff., vortex, centr., filt., residues twice re-extr. combined super. extr. with SPE, Oasis     | Hydrobond $C_8$ , 5 $\mu m$ (endc), 35°C; El: A: 0.01 M oxalic acid for milk or 0.1% HCOOH for shrimps; A/ACN/ $CH_3OH$ (75:18: 7 v/v/v). FR: 1 mL/min                    | UV, 370 nm<br>ESI-MS/MS                                                        | UV: 50–400 $\mu g/kg$ ; MS: Shrimp: 25–400 $\mu g/kg$ ; Milk: 50–400 $\mu g/kg$ | Shrimps: OTC: 81–91, TC: 92–97, CTC: 72–82<br>Milk: OTC: 75–95, TC: 86–88, CTC: 75–85 | (67) |
| TC, OTC,<br>CTC,    | Eggs and honey         | Extr. with Tetradsensor <sup>®</sup> kit buff., vortex, centr., dilut. with $CH_3OH$ 1:9 and 1:3 for honey and eggs.       | Genesis $C_{18}$ 4 $\mu m$ ; El: 0.2% HCOOH and 0.1 mM oxalic acid/ $CH_3OH$ . Grad. El.: 90:10 (0 min), 25:75 (1 min), 25:75 (2.5 min), 90: 10 (2.6 min). FR: 0.3 mL/min | ESI-MS/MS                                                                      | Micr. Method; Honey: 25 $\mu g/kg$ ; Eggs: 125 $\mu g/kg$                       | Eggs: OTC: 67.5; TC: 71.4; CTC: 60.4                                                  | (53) |

## Analysis of Tetracyclines in Foods

|                                  |         |                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                      |                                                                                                                       |
|----------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| OTC, TC,<br>MTC                  | Honey   | Extr. with 2% citric acid<br>sol. (pH 4.5 with 40%<br>NaOH). Add. of 0.1 M<br>phosphate buff. (pH 4)<br>XAD-2 resins.              | XDB-C <sub>18</sub> , 5 $\mu$ m; EI:<br>0.001 M phosphoric<br>acid/ACN (84:16 v/v).<br>FR: 0.5 mL/min                                                                                                                                      | DAD (274 nm for<br>OTC and TC,<br>350 nm for<br>MTC) and CL<br>det. With pot-<br>assium<br>permanganate<br>sodium sulfite-<br>$\beta$ -cyclodextrin | LR: 8–800 ng/mL.<br>LOD: with DAD:<br>OTC: 2 ng/mL,<br>MTC: 2, CL: 9<br>with CL: OTC:<br>3 ng/mL, TC: 5,<br>MTC: 0.9 | DAD: OTC: 96–118, TC: (61)<br>94–116, MTC: 97.2–<br>103.2; CL: OTC:<br>104.118.0, TC: 92.6–<br>122.0, MTC: 99.6–105.8 |
| TC, OTC,<br>CTC, DC              | Shrimps | Extr. with 0.1 M Na <sub>2</sub> -<br>EDTA/McIlvaine buff.<br>(pH 4), homog., centr.,<br>filt., SPE C <sub>18</sub><br>Phenomenex. | Inertsil C <sub>18</sub> , 3 $\mu$ m; EI:<br>0.01 M phosphate buff.<br>(pH 2.5)/ACN (80:20<br>v/v)FR: 1 mL/min                                                                                                                             | Electr. det. with a<br>boron-doped<br>diamond thin<br>film electrode<br>(1.4 V)                                                                     | LOD: OTC, TC:<br>0.01 ng/ $\mu$ L CTC,<br>0.05 ng/ $\mu$ L<br>DC: 0.05 ng/ $\mu$ L                                   | OTC: 83.3–96.5, TC: (54)<br>88.4–96.9, CTC: 86.6–<br>93.3, DC: 90.6–102.0                                             |
| TC, OTC,<br>CTC, DC4-<br>epimers | Honey   | Extr. with oxalate buff.<br>(pH 4), vortex, centr.,<br>SPE, oasis HLB                                                              | Atlantis dC <sub>18</sub> , 3 $\mu$ m; EI:<br>(A) water with 0.1%<br>HCOOH (B) CH <sub>3</sub> OH/<br>ACN (50:50 v/v). Grad.<br>El.: 0–5 min 15% B,<br>5–10 min 40%, 10–<br>13 min 90% B, 13–23<br>min 15% B. fr:<br>0.3 mL/min. I.S.: DMC | ESI-MS/MS                                                                                                                                           | LR: 0–100 $\mu$ g/kg                                                                                                 | (60)                                                                                                                  |

(continued)

**Table 2.** Continued

| Analytes                    | Sample                                                                | Sample preparation                                         | Chromatography                                                                                                                                                                                                                                                      | Detection  | Linear range                                                                                                                                                        | Recovery (%) | Ref  |
|-----------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| OTC, TC,<br>CTC, DC,<br>MNC | Bovine<br>muscle                                                      | Extr. with 0.3 M citrate<br>buff. Clean-up on<br>NEXUS SPE | Inertsil ODS-3 5 $\mu$ m.<br>Multi-step grad. El. with<br>0.05 M oxalic acid and<br>ACN. FR: 1.65 mL/<br>min.                                                                                                                                                       | DAD 351 nm | LOQ 40 $\mu$ g/kg for<br>MNC, CTC and<br>DC and 25 $\mu$ g/kg<br>for OTC and TC<br>CC $\alpha$ 104.7–<br>109.8 $\mu$ g/kg,<br>CC $\beta$ 108.4–<br>116.7 $\mu$ g/kg | 98.7–103.3   | (64) |
| OTC, TC,<br>CTC             | Animal<br>(bovine<br>and<br>swine)<br>muscle,<br>kidney,<br>and liver | Ultrafiltr. Ultrafree MC/<br>PL membranes                  | TSK-Guardgel ODS-80 Ts<br>column (5 $\mu$ m,<br>15 mm $\times$ 3.2 mm I.D.;<br>at 30°C Grad. El. El: A:<br>0.05% HCOOH. B:<br>MeOH with 0.05%<br>HCOOH. FR: 0.2 mL/<br>min. Grad. El.:<br>$t$ = 0.00–0.50 min,<br>%B = 0; $t$ = 0.51–<br>6.00, %B = 100. IS:<br>DMC | ESI-MS-MS  | 0.002 ppm                                                                                                                                                           | 70–115       | (63) |

|         |            |                                          |                                                                                                                                                                                                                                                                                                  |           |       |      |
|---------|------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|------|
| TC, OTC | Pig kidney | Extr.with EDTA-McIlvaine's buff., MI-SPE | A 25 cm × 0.4 cm i.d.<br>Tracer Extrasil ODS2,<br>5 µm, ec, Teknokroma.<br>El: Milli-Q water with<br>3% of MeOH and 1% of<br>acetic acid (A), and<br>ACN (B). FR:<br>1 ml min <sup>-1</sup> . Grad. El.<br>10–15% B from 0 to<br>15 min, 100% B at<br>35 min and then is. el.<br>for 2 min. 35°C | UV 350 nm | 66–69 | (34) |
|---------|------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|------|

(2.5:1:1.5 v/v/v), pH 2 for the determination of TC, OTC, CTC and DC (47). A mixture of 0.01 M oxalic acid–CH<sub>3</sub>OH–ACN (65:17.5:17.5 v/v/v) was used for the determination of TC, OTC and CTC (48).

The separation of TC, OTC, CTC, and DC was also achieved on a Symmetry C<sub>18</sub>, 5 µm, column with gradient elution starting with 100% CH<sub>3</sub>OH/0.069% TFA (30:70) and ending at 100% CH<sub>3</sub>OH (49). A Phenomenex ODS-3 analytical column was used with 4 mM oxalic acid, 4 mM sodium oxalate, 4 mM sodium dodecylsulfonate/ACN (70:30 v/v) for the separation of TC, OTC and CTC (50).

A Puresil C<sub>18</sub> analytical column with 0.5% formic acid and 1 mM ammonium oxalate/ACN (80:20 v/v) was used for the separation of TC, OTC, CTC and their 4-epimers (51). Prior LC-MS/MS analysis a Puresil C<sub>18</sub>, 5 µm, was used with 0.5% formic acid/ACN (23:77) as mobile phase for the determination of TC, ETC, ATC and EATC (37).

A µ-Bondapak C<sub>18</sub>, 5 µm, column was used with 100% CH<sub>3</sub>OH as eluent for the determination of MNC (52). A Genesis C<sub>18</sub> (4 µm) analytical column was used with 0.2% formic acid and 0.1 mM oxalic acid/CH<sub>3</sub>OH as eluent for the separation of TC, OTC and CTC. Gradient elution was applied, starting with 90:10 (v/v), changing to 25:75 (v/v) in 1 min, remaining for 2.5 min and going back to the initial conditions at 2.6 min (53).

An Inertsil C<sub>18</sub>, 3 µm, analytical column was used with 0.01 M phosphate buffer (pH 2.5)/ACN (80:20 v/v) for the separation of TC, OTC, CTC and DC (54). A C<sub>18</sub>, 5 µm, analytical column with no more information with regards to the sorbent material was used with 0.1 M KH<sub>2</sub>PO<sub>4</sub> (pH 2.5 with H<sub>3</sub>PO<sub>4</sub>)/ACN (80:20 v/v) for the separation of TC, OTC, CTC, and DC (55). A Nova-Pack C<sub>18</sub>, 4 µm, column was used with 0.01 M citric acid–0.01 M K<sub>2</sub>HPO<sub>4</sub>/ACN (72:28 v/v) with 0.005 M tetramethylammonium chloride, 0.1 g/L EDTA for the determination of TC, OTC and CTC (56), as well as with 0.01 M oxalic acid/CH<sub>3</sub>OH /ACN (3.5:1.5:1 v/v/v), pH 2 with HCl (60:40 v/v) for the determination of CTC (57).

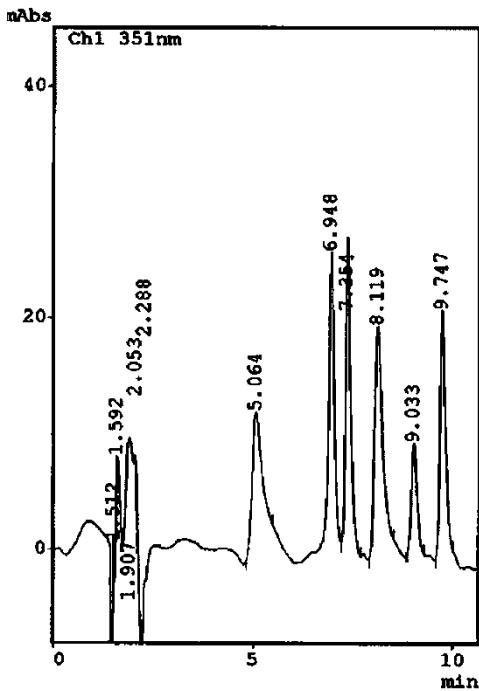
The separation of TC, OTC, DMC, MNC, ATC, EATC and MTC was achieved on a Purosphere RP-18, 3 µm column with gradient elution starting at A: B 16:84 v/v, changing to 24:76 v/v after 1.5 min, to 30:70 v/v after 2 min and ending to 50:50 v/v after 7 min, where A is ACN with 0.2% formic acid and B is H<sub>2</sub>O with 0.2% formic acid (58).

A Novapack C<sub>18</sub>, 5 µm, column was used for TC, OTC and CTC determination, with 0.05 M oxalic acid/ACN/CH<sub>3</sub>OH (30:50:20 v/v/v) and 0.05 M oxalic acid/ACN (40:60 v/v) as mobile phase (59).

An Atlantis dC<sub>18</sub>, 3 µm, analytical column was used with A: water with 0.1% formic acid and B: CH<sub>3</sub>OH /ACN (50:50 v/v) for the separation of TC, OTC, CTC, DC, and their 4-epimers. DMC was used as internal standard. A linear multi-step gradient elution program was applied starting with 15% B, changing to 40% with the next 5 min, and to 90% B after 3 min. An equilibrium step of 10 min was applied to bring the initial conditions (60).

An XDB-C<sub>18</sub>, 5  $\mu$ m, column was used with 0.001 M phosphoric acid/ACN (84:16 v/v) for the determination of OTC, TC, and MTC (61). A Prodigy C<sub>18</sub>, 2  $\mu$ m, analytical column was used for the determination of OTC, TC and CTC using A: CH<sub>3</sub>CN/0.01 M oxalic acid, 0.01 M EDTA, 0.04% HFBA (10:90 v/v) and B: CH<sub>3</sub>CN/0.01 M oxalic acid, 0.01 M EDTA, 0.04% HFBA (90:10 v/v). Gradient elution was applied starting with 10% B, changing to 50% B after 10 min, to 90% B after 1 min, and remaining isocratic for 3 min. An equilibration step was applied to bring back the system to the initial conditions for 2 min (62).

A TSK-Guardgel ODS-80 Ts column (5  $\mu$ m, 15 mm  $\times$  3.2 mm I.D) was used for the sample enrichment of TC, OTC and CTC at 30°C. A stepwise gradient was applied. Mobile phase A was distilled water containing 0.05% formic acid. Mobile phase B was methanol containing 0.05% formic acid. The gradient conditions were as follows, base on time (*t*) set at the pump: *t* = 0.00–0.50 min, hold %B = 0; *t* = 0.51–6.00, hold %B = 100. DMC was used as internal standard (63).


An Inertsil ODS-3, (5  $\mu$ m, 250  $\times$  4 mm, analytical column) was used for the determination of OTC, TC, CTC, DC and MNC in bovine muscle, at ambient temperature. A multi-step linear gradient elution was applied using A: 0.05 M oxalic acid and B: CH<sub>3</sub>CN. Initial conditions were 92:8 v/v, changing to 80:20 after 2 min, 75:25 after 3 min, 70:30 after 2 min, and remaining isocratic for 2 min more and reaching 65:35 after 2 min. Anthranilic acid was used as internal standard (64). A typical chromatogram is shown in Figure 4.

A Hypersil C<sub>8</sub>, 5  $\mu$ m, analytical column was used with 0.01 M oxalic acid–CH<sub>3</sub>OH–ACN (60:25:15, v/v/v) as eluent for the separation of TC, OTC, CTC and DC (65), while CTC was determined with ACN/0.5% formic acid (70:30 v/v) with OTC as internal standard (66).

An end-capped Hydrobond C<sub>8</sub>, 5  $\mu$ m, analytical column was used at 35°C with A: 0.01 M oxalic acid for milk or 0.1% formic acid for shrimps A/ACN/CH<sub>3</sub>OH (75:18:7 v/v/v) as mobile phase for the separation of TC, OTC and CTC (67). An Inertsil C<sub>8</sub>, 5  $\mu$ m column was used with 0.1 M ammonium acetate (pH 3)/ACN/THF (72.5:12.5:15 v/v/v) for the separation of OTC, EOTC,  $\alpha$ -apoOTC and  $\beta$ -apoOTC (68). A Chromspher C<sub>8</sub>, 5  $\mu$ m, column was used with 0.01 M oxalic acid–ACN (80:20 v/v) for the determination of TC, OTC, CTC, DC, MTC and DMC (69).

A Supersphere RP-8, 4  $\mu$ m, analytical column was used for the separation of TC, OTC, CTC, ICTC, N-DMCTC, N-DMOTC, and 4-N-DMICTC with 0.01 M or 0.005 M oxalic acid–ACN (50:50 v/v) as eluent. For LC-MS/MS the mobile phase consisted of ACN/0.5% formic acid (40:60 v/v) (70). A Chemosorb C<sub>8</sub>, 3  $\mu$ m column was used with a mobile phase consisted of 0.01 M oxalic acid/CH<sub>3</sub>OH /ACN (16:3:2 v/v/v), pH 3 for the separation of TC, OTC, CTC, DC, MTC, DMC and MNC (71).

A Bakerbond C<sub>8</sub>, 5  $\mu$ m analytical column operated at 30°C was used with 0.01 M oxalic acid/CH<sub>3</sub>OH /ACN (55:27:18 v/v/v) at pH 2, for the



**Figure 4.** High performance liquid chromatogram of tetracyclines in spiked bovine muscle tissue at 8 ng/ $\mu$ L, after SPE using the conditions described in text. Peaks: (1) MNC 5.064 min (2) OTC 6.948 min (3) TC 7.354 min (IS) anthranilic acid 8.119 min (4) CTC 9.033 min and (5) DC 9.747 min.

determination of TC, OTC, CTC and DC (72). A TSK Gel Super C<sub>8</sub>, 2  $\mu$ m, column was used with ACN/0.05% TFA (1:4 v/v) as mobile phase for the determination of OTC, TC and CTC (73).

A polystyrene–divinylbenzene PLRP-S, 5  $\mu$ m, analytical column was used for the determination of TC, OTC, CTC and DMC. A linear gradient elution from 100% A to 100% B in 10 min and then isocratic 100% B for 10 min was applied with A: 0.1 M NaH<sub>2</sub>PO<sub>4</sub>–0.01 M Citric acid–0.01 M EDTA and B: ACN-CH<sub>3</sub>OH-A (25:10:65 v/v/v) (74). A similar analytical column PLRP-S, 8  $\mu$ m, was used for the separation of TC, OTC, CTC and DC with 0.01 M oxalic acid–ACN. Linear gradient elution was applied changing from 85:15 v/v to 60:40 v/v (75). The same column was used for the determination of TC, OTC, CTC, and DC with DMC as internal standard. Gradient elution was applied starting from 85:15 v/v and changing to 60:40 v/v in 16 min. with 0.01 M oxalic acid–ACN (50). TC, OTC, CTC, DC and 4-epimers with DMC as internal standard were separated on the same column, operated at 60°C, with 0.001 M oxalic acid, 0.5% (v/v) formic acid, 3% (v/v) THF (A)/THF(B) as mobile phase.

Gradient elution was applied starting with 100% A for 20 min, changing to 95% A, in 7 min, 90% A for 7 min and brought back to the initial conditions for 6 min (76). The same column was used with A: 0.1 M  $\text{NaH}_2\text{PO}_4$ –0.01 M citric acid–0.01 M EDTA and B: ACN– $\text{CH}_3\text{OH}$ –A (25:10:65 v/v/v). Linear gradient elution changing from 100% A to 100% B in 10 min and then isocratic 100% B for 10 min was used for the separation of TC, OTC, CTC, and DMC (77), while an isocratic method with 0.01 M oxalic acid–ACN (50:50 v/v) achieved the separation of OTC, TC and CTC (78). A PLRP-S, 5  $\mu\text{m}$ , column was used for the separation of TC, OTC, CTC, DC, MTC, DMC and MNC with 0.01 M oxalic acid/ $\text{CH}_3\text{OH}$ /ACN as eluent. Gradient elution was applied under the following timetable: 0–1 min 100:0:0 v/v/v, linear change from 1–5 min to 70:8:22 v/v/v, from 5–11 min 70:8:22 v/v/v (79), while the separation of TC, OTC, CTC, DC, DMC and MNC was achieved on the same column with 0.01 M oxalic acid/ $\text{CH}_3\text{OH}$  (58:42 v/v) (80).

Other columns used involve an ODP-50, 5  $\mu\text{m}$  column operated at 40°C with Sorensen buffer (pH 12)/ACN (90:10 v/v) for the determination of TC and OTC (81) and a Discovery RP-Amide C<sub>16</sub> 5  $\mu\text{m}$  analytical column for the separation of TC, OTC, CTC, DC, MNC and MTC. In the latter case 0.01 M oxalic acid–ACN (88:12 v/v) was used as the mobile phase under a gradient program of isocratic elution for 9 min, changing to 82:18 v/v in 0.01 min, and isocratic elution for 16 min (82).

#### Thin Layer Chromatography

Thin layer chromatography (TLC) was also applied to the tetracyclines determination. An overview of the thin-layer chromatographic method used in TC's determination in food samples is presented in Table 3. A Merck Silica gel HPTLC plate, pre-developed with  $\text{Na}_2\text{EDTA}$ , activated at 130°C, was used with  $\text{CH}_3\text{Cl}/\text{CH}_3\text{OH}/5\%$   $\text{Na}_2\text{EDTA}$  (60:20:5 v/v/v) as mobile phase for the determination of TC, OTC, CTC and DC in tissues, milk and egg (83), as well as for the separation of MNC, CTC, DC, MTC, OTC (71). RP-8 TLC plates with 0.5 M oxalic acid/ACN/ $\text{CH}_3\text{OH}$  (4:1:1 v/v/v), pH 2 as mobile phase were used for the determination of and MNC, OTC, TC, DMC and CTC (71).

A Merck Silica gel plate, pre-developed with 10% sodium acetate pH 8, activated at 110°C, was used with  $\text{CH}_2\text{Cl}_2/\text{CH}_3\text{OH}/\text{H}_2\text{O}$  (59:35:6 v/v/v) for TC, 60:35:5 v/v/v for CTC, 58:35:7 v/v/v) as well as for the determination of OTC, TC, ETC, ATC, EATC, ADTC, OTC, EOTC, ADOTC,  $\alpha$ -apoOTC,  $\beta$ -apoOTC, CTC, CTC, ADCTC, MTC and DMC in animal feeds and premixes. Fluorescence densitometry was applied after plates been dipped in liquid paraffin in hexane (30:70) with LOQ values 0.2 ng for TC, CTC and their impurities and 0.1 ng for OTC and its impurities (84).

A silica gel plate Si60 F<sub>254</sub> was used for the determination of DC with 0.05 M citric acid/ $\text{CH}_3\text{OH}$ /isopropanol (1:3:1 v/v/v) in milk using UV densitometry at 366 nm. A linear range of 0.1–0.5  $\mu\text{g}$  was obtained (85).

**Table 3.** Overview of TLC methods for the determination of tetracyclines in foodstuffs of animal origin

| Analytes                                                              | Sample                | Sample preparation                                                                                                                         | Chromatography                                                                                                                                                                                                                                                                           | Detection                                                                                                                                                                                                                                                                           | LOD/Linear range                                                                                                                        | Recovery (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref  |  |  |
|-----------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| TC, OTC,<br>CTC, DC                                                   | Tissues,<br>milk, egg | Extr. with 0.1 M Na <sub>2</sub> -<br>EDTA/McIlvaine<br>buff. (pH 4),<br>homog., centr., filt.,<br>SPE C <sub>18</sub> Sep-Pack.           | Merck Silica gel<br>HPTLC plate (pre-<br>dev. with Na <sub>2</sub> EDTA,<br>activ. at 130°C); El:<br>CH <sub>3</sub> Cl/CH <sub>3</sub> OH/5%<br>Na <sub>2</sub> EDTA<br>(60:20:5 v/v/v)                                                                                                 | UV Dens. and with<br>det. reagents<br>(1% Fast violet<br>B, 120°C)                                                                                                                                                                                                                  | LOD: 0.1 ng/μL                                                                                                                          | UV detection: Milk: OTC: 85.6, TC: (83)<br>73.0, CTC: 79.0, DC: 80.6; Egg:<br>OTC: 76.6, TC: 72.3, CTC: 75.2,<br>DC: 61.0; Chicken: OTC: 65.7, TC:<br>70.5, CTC: 73.0, DC: 72.2; Bovine:<br>OTC: 75.7, TC: 62.4, CTC: 65.5,<br>DC: 61.0 Pork: OTC: 78.0, TC:<br>70.3, CTC: 66.7, DC: 68.2; Spray<br>reagent: Milk: OTC: 75.4, TC:<br>66.6, CTC: 73.3, DC: 73.3; Egg:<br>OTC: 65.8, TC: 73.3, CTC: 83.3,<br>DC: 59.2; Chicken: OTC: 75.0, TC:<br>65.8, CTC: 65.8, DC: 65.0; Bovine:<br>OTC: 61.7, TC: 65.8, CTC: 66.7,<br>DC: 65.0; Pork: OTC: 70.0, TC:<br>83.3, CTC: 81.1, DC: 56.6 |      |  |  |
| (A):MNC,<br>CTC, DC,<br>MTC, OTC<br>(B): MNC,<br>OTC, TC,<br>DMC, CTC | Honey                 | Extr. with 0.1 M<br>Na <sub>2</sub> EDTA/McIl-<br>vaine buff. (pH 4),<br>homog. centr., filt.,<br>SPE C <sub>18</sub> Baker<br>cartridges. | Merck Silica gel<br>HPTLC plate (pre-<br>dev. with Na <sub>2</sub> EDTA,<br>activ. at 130°C); El:<br>CH <sub>3</sub> Cl/CH <sub>3</sub> OH/5%<br>Na <sub>2</sub> EDTA (60:<br>20:5 v/v/v)RP-8<br>TLC plates; El:<br>0.5 M oxalic acid<br>ACN/CH <sub>3</sub> OH (4:<br>1:1 v/v/v), pH 2. | Det. reagents for<br>HPTLC: 0.2 M<br>dev. with Na <sub>2</sub> EDTA,<br>activ. at 130°C; El:<br>CH <sub>3</sub> Cl/CH <sub>3</sub> OH/5%<br>Na <sub>2</sub> EDTA (60:<br>20:5 v/v/v)RP-8<br>TLC plates; El:<br>0.5 M oxalic acid<br>ACN/CH <sub>3</sub> OH (4:<br>1:1 v/v/v), pH 2. | HPTLC: MNC:<br>HPTLC: 0.2 M<br>MgCl <sub>2</sub> for<br>RP-TLC: 0.2 M<br>MgCl <sub>2</sub> and 10%<br>TEA in<br>methanol UV<br>(360 nm) | 0.03 μg;<br>Others:<br>0.01 μg; RP-<br>TLC: 0.01 μg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (71) |  |  |

## Analysis of Tetracyclines in Foods

|                                                                                                                                               |                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                           |                                                                                              |                                                                                                 |                                                                                   |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------|
| TC, OTC,<br>CTC, DC                                                                                                                           | Bovine<br>tissues         | Extr. with 0.1 M Na <sub>2</sub> -<br>EDTA/McIlvaine<br>buff. (pH 4) $\times$ 3,<br>homog., centr., filt.,<br>SPE C <sub>18</sub> Baker<br>cartridges                                                                                                           | RP-8 TLC plates; El:<br>0.5 M oxalic acid/<br>ACN/CH <sub>3</sub> OH<br>(4:1:1 v/v/v), pH 2                                                                                                                                                               | FAB-MS/MS                                                                                    | LOD: 0.1 ng/ $\mu$ L                                                                            | No quantitative<br>results                                                        | (86) |
| DC, FL                                                                                                                                        | Milk                      | Milk samples inj. on<br>the TLC plate pre-<br>dev. with hexane to<br>remove lipid<br>fraction                                                                                                                                                                   | Silica gel plate Si60<br>F <sub>254</sub> . El: 0.05 M<br>citric acid/CH <sub>3</sub> OH/<br>IPA (1:3:1 v/v/v)                                                                                                                                            | UV Dens. (254 nm<br>for FL, 366 nm<br>for DC)                                                | LR: 0.1–0.5 $\mu$ g                                                                             | DC: 98.2–101.2;<br>FL: 96.4–129.3                                                 | (85) |
| TC, ETC,<br>ATC,<br>EATC,<br>ADTC,<br>OTC,<br>EOTC,<br>ADOTC,<br>$\alpha$ -apoOTC,<br>$\beta$ -apoOTC,<br>CTC,<br>ECTC,<br>ADCTC,<br>MTC, DMC | Animal feeds,<br>premixes | Premixes: extr. with<br>CH <sub>3</sub> OH/1 M HCl<br>(99:1 v/v), ultra-<br>sonic, filt., dil. with<br>CH <sub>3</sub> OH<br>Feeds: add.<br>of Kieselgur,<br>homog. Add. of<br>CH <sub>3</sub> OH/1 M HCl<br>(99:1 v/v), dil. with<br>CH <sub>3</sub> OH, filt. | Merck Silica gel plate<br>(pre-dev. with 10%<br>sodium acetate pH 8,<br>activ. at 110°C);<br>El:CH <sub>2</sub> Cl <sub>2</sub> /<br>CH <sub>3</sub> OH/H <sub>2</sub> O<br>(59:35:6 v/v/v for<br>TC, 60:35:5 v/v/v<br>for CTC, 58:35:7<br>v/v/v for OTC. | FL Dens. (400 nm<br>after plates been<br>dipped in liquid<br>paraffin in hex-<br>ane (30:70) | LOQ: 0.2 ng for<br>TC, CTC and<br>their impurities;<br>0.1 ng for OTC<br>and its<br>impurities. | Animal feeds: TC: 72.6–80.1%;<br>Premixes: TC: 79.2; CTC:<br>87.2–99.2; OTC : 7.3 | (84) |

TC, OTC, CTC and DC were determined in bovine tissues using RP-8 TLC plates with 0.5 M oxalic acid/ACN/CH<sub>3</sub>OH (4:1:1 v/v/v), pH 2, as mobile phase and detection FAB-MS/MS with LOD: 0.1 ng/μL (86).

### Other Techniques

As already mentioned, the vast majority of the reviewed papers apply HPLC for the separation of tetracyclines antibiotics. However other techniques can be found in literature concerning the determination of tetracycline antibiotics. Among them capillary electrophoresis (87, 88), fluorimetry (89), microbiological assays (90–92), electrochemical biosensors (93–96), FIA (97) are also used for tetracycline analysis. These methods are summarized in Table 4.

Capillary electrophoresis using a Fused silica capillary of 27 cm × 75 μm i.d. (20°C) and 500 mM magnesium acetate tetrahydrate in N-methylformamide as medium, 15 kV and fluorescence detector set at  $\lambda_{\text{exc}}$  325 nm,  $\lambda_{\text{em}}$  515 nm provided a linear range: 50–1000 ng/mL for TC, OTC, CTC, DMC, ETC and EATC determination in milk and plasma samples (88).

OTC in catfish was determined by Capillary Electrophoresis using a coated capillary cartridge of 24 cm × 25 μm i.d. (25°C), Medium: 0.2 M phosphate buffer (pH 2), 8 kV and UV detection at 265 nm. A linear range: 0.1–25 ng/μL and LOD: 0.05 ng/μL were obtained (87).

Fluorimetry was applied for the determination of TC, OTC and CTC in chicken tissues at  $\lambda_{\text{exc}}$  375 nm,  $\lambda_{\text{em}}$  515 nm LOD: TC: 0.15 μg/g, OTC: 0.327 μg/g, CTC: 0.25 μg/g (89). Microbiological assays used for the determination of TC, OTC, CTC and DC in milk provided LOD values of 1500 μg/kg for CTC, 260 μg/kg for DC, 560 μg/kg for OTC and 480 μg/kg for TC (91).

OTC and CTC were determined in tissue samples by microbiological test yielding an LOD value of 600 μg/kg (92). Microbiological tests for the determination of TC, OTC, CTC and DC in tissues provided an LOD of 3 ng for OTC, 4 ng for TC, 0.3 for CTC and 0.6 ng for DC (93).

TC and OTC were determined in honey by FIA. As TCs inhibit electrochemiluminescence (ECL) from Ru(bpy)<sub>3</sub><sup>+2</sup>–tripropylamine system, detection was performed by inhibited ECL with a Pt working electrode at 1.05 V (vs Ag/AgCl). LOD values achieved were  $4 \times 10^{-9}$  g/mL for TC and  $3.8 \times 10^{-9}$  g/mL for OTC (97).

Two luminescent biosensors were used for the determination of TC, OTC, CTC, DC, DMC, MNC MTC and DMC in pork serum. Luminescence was measured after the addition of D-luciferin. LOQ values achieved were 50 ng/mL (96). A Whole-cell biosensor was also used for CTC determination. Measurements of the produced β-galactosidase fluorescent protein provided an LOD of 0.03 mg/kg (95).

**Table 4.** Overview of other analytical methods for the determination of tetracyclines in foodstuffs of animal origin

| Analytes                   | Sample type  | Sample preparation                                                                                                        | Analytical technique                                                                                                                                                                                                                                                       | Linear range/LOD                    | Recovery (%)   | Ref  |
|----------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|------|
| OTC                        | Catfish      | Extr. with 50% TCA, 1 M HCl and Na <sub>2</sub> EDTA(s), vortex, centr., filt., SPE, Sep-Pack C <sub>18</sub> cartridges. | CE: Coated capillary cartridge of 24 cm × 25 µm i.d. (25°C), Medium: 0.2 M phosphate buff. (pH 2), 8 kV, UV 265 nm                                                                                                                                                         | LR: 0.1–25 ng/µL<br>LOD: 0.05 ng/µL | 92.9           | (87) |
| TC, OTC, CTC, MC, ETC, ATC | Milk, plasma | Precip. of proteins with 10% TCA, centr., SPE MP1 microcolumns.                                                           | CE: Fused silica capillary of 27 cm × 75 µm i.d. (20°C), Medium: 500 mM magnesium acetate tetrahydrate in N-methylformamide, 15 kV, FL $\lambda_{\text{exc}}$ 325 nm, $\lambda_{\text{em}}$ 515 nm                                                                         | LR: 50–1000 ng/mL                   | OTC: 63.3–97.2 | (88) |
| OTC, CTC                   | Tissues      | Homog.                                                                                                                    | Microb. tests: test strain: <i>B. cereus</i> , growth medium: agar sol. pH 6.5, supplement: MgSO <sub>4</sub> · 7H <sub>2</sub> O, incub. at 30°C for 18–24 h. test strain: <i>B. subtilis</i> , growth medium: agar sol. pH 6, supplement: no incub. at 30°C for 18–24 h. | LOD: 600 µg/kg                      |                | (92) |

*(continued)*

**Table 4.** Continued

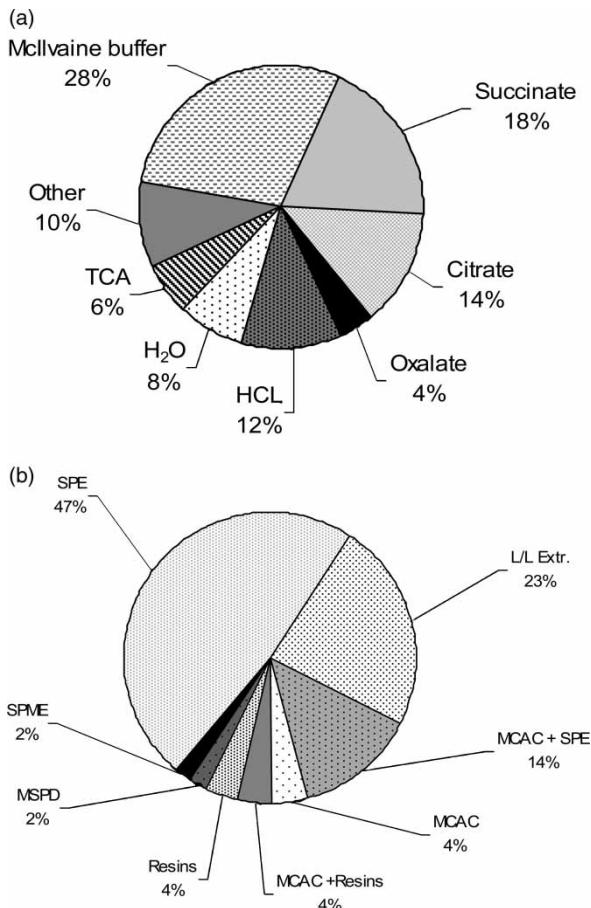
| Analytes                           | Sample type     | Sample preparation                                                                                       | Analytical technique                                                                                                                                                                                                                     | Linear range/LOD                                                   | Recovery (%) | Ref  |
|------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|------|
| CTC                                | Milk            | Milk samples centr., filt., add. to Luria broth with bacterial culture <i>E. coli</i> MC4100 (3 h, 37°C) | Three cell biosensors: containing TC promoter ( $P_{tet}$ ) and reporter gene (tet R, three different gene systems of <i>E. coli</i> , lacZYA, luxCDABE or gfp). Meas. of the produced $\beta$ -galactosidase, green fluorescent protein | LOD: 0.01 $\mu$ g/mL                                               |              | (94) |
| TC, OTC, CTC, DC, DMC, MNC MTC, MC | Pork serum      | Dil. with 1:1 with bacterial culture                                                                     | Two luminescent biosensors: media: Luria-Bertani medium, <i>E. coli</i> K12 pTetLuc1 and <i>E. coli</i> K12 pTetLux1. (37°C for 90 min). Meas.: luminescence after addit. of D-luciferin                                                 | LOQ: 50 ng/mL                                                      |              | (96) |
| CTC                                | Pig feces       | Extr. with double distilled $H_2O$ , vortex, centr.                                                      | Whole-cell biosensor: medium: Luria broth, bacterial culture: <i>E. coli</i> GM10.1 (3 h, 37°C). Meas. of the produced $\beta$ -galactosidase, fluorescent protein                                                                       | LOD: 0.03 mg/kg                                                    |              | (95) |
| TC, OTC, CTC + Fluoroquinolones    | Chicken tissues | Extr. with 1% acetic acid, homog., centr., add. of $NH_4OH$ , $CH_3OH$ , $MgCl_2$ , mix., centr., filt.  | FL $\lambda_{exc}$ 375 nm, $\lambda_{em}$ 515 nm                                                                                                                                                                                         | LOD: TC: 0.15 $\mu$ g/g, OTC: 0.327 $\mu$ g/g, CTC: 0.25 $\mu$ g/g | 22–36        | (89) |

## Analysis of Tetracyclines in Foods

|                     |         |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |                      |
|---------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| TC, OTC,<br>CTC, DC | Tissues | For the Tetrasensor test, dil.<br>with a buff., centr., filt.                                                                     | Microb. tests: Two agar diffusion<br>methods in pH 6 medium with<br><i>B. subtilis</i> and <i>B. sereus</i> (incub. at<br>30°C for a night) in thick plates for<br>meat fluid and in thin plates for<br>intact or minced meat. Two methods:<br>Premi test (inhibitor test with<br><i>B. stearothermophilus</i> , incub. at<br>64°C for 2 h). Tetrasensor<br>(receptor test) | LOD: with <i>B. subtilis</i><br>OTC: 8, TC: 5,<br>CTC: 0.5, DC: 1 ng;<br>With <i>B. sereus</i> OTC:<br>3, TC: 4, CTC: 0.3,<br>DC: 0.6 ng | (90)                 |
| TC, OTC, CTC        | Milk    | Add. of milk to cultural<br>medium (Mueller-Hin-<br>ton agar) with bacterial<br>culture <i>E. coli</i> ATCC<br>11303 (2 h, 37°C). | Electr. biosensor: measurement of CO <sub>2</sub><br>production rate in relation to<br>inhibition of microbial growth ( <i>E.</i><br><i>coli</i> ATCC 11303). Sensor: galvanic<br>cell with a RE, and an IE. WS: KCl<br>in water with 10 <sup>-4</sup> M Na <sub>2</sub> CO <sub>3</sub>                                                                                    | LOD: 25 µg/L                                                                                                                             | (93)                 |
| TC, OTC,<br>CTC, DC | Milk    | Add. of 4 µL/mL acidiol<br>solution                                                                                               | Microb. test: Eclipse 100. test strain:<br><i>B. stearothermophilus</i> , growth<br>medium: sol. commercially<br>available, incub. at 64°C for 2 h,<br>30 min                                                                                                                                                                                                               | LOD: CTC: 1500, DC:<br>260, OTC: 560, TC:<br>480 µg/kg                                                                                   | (91)                 |
| TC, OTC             | Honey   | Extr. with citric acid (pH<br>4), homg., adj. pH at 4.5<br>with 2% citric acid,<br>phosphate buff., XAD-2<br>resins               | FIA: TCs inhibit ECL from Ru(bpy) <sub>3</sub> <sup>+2</sup> –<br>tripropylamine system. Det.:<br>inhibited ECL with a Pt working<br>electrode at 1.05 V (vs. Ag/AgCl)                                                                                                                                                                                                      | LOD: 4 × 10 <sup>-9</sup> g/mL<br>for TC and<br>3.8 × 10 <sup>-9</sup> g/mL<br>for OTC                                                   | TC: 82 – 108<br>(97) |

Three cell biosensors were used for CTC determination in milk. Quantifications based on measurements of the produced  $\beta$ -galactosidase green fluorescent protein. LOD: 0.01  $\mu\text{g}/\text{mL}$  (94). An electrochemical biosensor was applied for TC, OTC and CTC in milk samples with LOD: 25  $\mu\text{g}/\text{L}$  (93).

### Extraction Conditions—Cleanup Sample Preparation


It is widely accepted that the most important step and the most time-consuming one in any analytical method applied to food analysis is, beyond any doubt, the extraction and isolation step.

The isolation of TCs from tissues combines an extraction step with a suitable solvent system and a cleanup procedure. A common problem in the analysis of TCs is that they have the tendency to bind irreversibly to the silanol groups on silica-based materials (C<sub>8</sub>, C<sub>18</sub>) due to the presence of the two ketone groups. Moreover, as they readily form chelate complexes with divalent metal ions and combine with sample matrix proteins, an acidic deproteinizing agent is demanded as extracting solvent.

Half of the reviewed methods for the determination of tetracyclines found in literature as they are presented in Tables 2–4, are applied to tissue samples of various animals, while milk, honey and animal feed samples possess a quite important percentage, about 10% each one. In most of these methods three or four tetracyclines are separated, TC, OTC, CTC and DC above all, as these drugs are used in veterinary medicine.

Tetracyclines are usually extracted from sample matrix using an acidic buffer solution, sometimes in combination with a chelating agent. Figure 5a shows the frequency of usage of the different extraction media. McIlvaine buffer solution (a mixture of citric acid and disodium hydrogen phosphate) with Na<sub>2</sub>EDTA is the prevailing medium for TC's extraction from liver, honey, shellfish, shrimps, bovine, porcine muscle, milk, shrimps, cheese, eggs. The next medium of choice for TC's extraction from milk, shrimp, eggs, animal bones, kidney, bovine, porcine muscle, and chicken meat is succinate buffer. Citrate buffer in different concentrations is also used.

For further cleanup, solid phase extraction (SPE) on C<sub>18</sub>-solid phase extraction (SPE) cartridges or hydrophilic-lipophilic balanced-SPE (HLB-SPE) cartridges is the extraction technique most frequently used (47%) prior to the chromatographic analysis as shown in Figure 5b. Other techniques used include liquid-liquid extraction, solid-phase microextraction, matrix solid phase dispersion and metal chelate affinity chromatography. However liquid-liquid extraction is rarely used as it is time consuming and needs large amounts of organic solvents. Metal chelate affinity chromatography (MCAC) off- and on-line, based on the chelating ability of TCs, as well as exchange extraction membranes and XAD-2 resins have been employed as purification methods. Disadvantages of these procedures are mainly focused



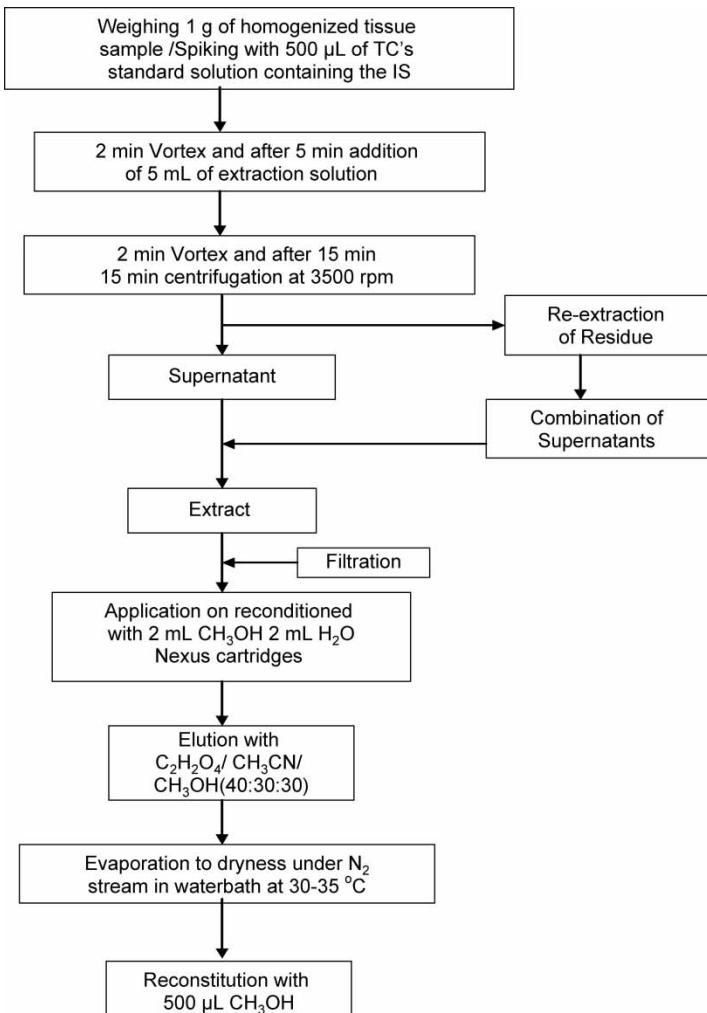
**Figure 5.** (a) Solutions used for the extraction of TCs from food samples. (b) Percentage distribution of sample preparation used for tetracyclines determination in food samples.

on their complication and their poor recoveries, so that in most cases an extra solid phase extraction step is demanded.

A common feature encountered when developing extraction methodologies for tetracyclines analysis besides their tendency to form strong complexes with multivalent cations is the fact that they are amphoteric compounds soluble in polar and moderately polar organic solvents. Binding to silanols has resulted in low recoveries when C<sub>18</sub> SPE columns are used for cleanup extracts. To avoid this problem, C<sub>18</sub> SPE columns have been silylated or pre-treated with EDTA.

As stated above to decrease the tendency for tetracyclines to bind to cations in the matrix the majority of the researchers utilize aqueous

solutions containing chelating agents e.g., EDTA, oxalic and citric acids. McIlvaine's buffer, used in many extraction procedures contains citric acid. The use of EDTA–McIlvaine's buffer, combined with SPE using alkyl-bonded silica cartridges for cleanup, was established by Oka et al. (71) appearing to be the current standard for the extraction of tetracyclines from tissue matrices (68). However in a recent paper of Samanidou et al. (64) 0.3 M citrate buffer provided better recovery rates as shown in Table 2. Nexus polymeric cartridges were used with  $\text{CH}_3\text{OH}/\text{CH}_3\text{CN}/0.05\text{ M}$  oxalic acid (30:30:40 v/v) providing a >90% recovery of the examined TCs. To optimize extraction of TCs namely OTC, TC, CTC, MNC and DC from bovine muscle tissue, various buffer solutions were tested. As shown from the results summarized in Table 5, citrate buffer 0.3 M at pH = 4 presents higher extraction efficiency (86.4–107.6%). It is noteworthy that citrate buffer provided better recovery than McIlvaine buffer, which by now prevails in most extraction schemes reported in the literature. The overall extraction scheme is presented in Figure 6 (64).


An increased interest is noticed in using the chelating abilities of tetracyclines when developing extraction methodologies. The use of metal chelating affinity columns was used to cleanup succinate buffer extracts of porcine kidney and muscle, and bovine liver for tetracycline, oxytetracycline and chlortetracycline analysis. Recoveries varied from 40 to 70%, with no apparent effects due to the tetracycline type or tissue. This may be of some benefit, as Blanchflower et al. (62) showed that chlortetracycline is especially prone to epimerization in aqueous solutions, which may account for its low recoveries.

Extraction with 0.1 M  $\text{Na}_2\text{EDTA}$ /McIlvaine buffer (pH 4) was applied for the isolation of TC, OTC, CTC, DC, MNC and MTC from honey. Further purification was achieved on Discovery phenyl-cartridges. High recovery rates were obtained that is 97% for MNC, 91% for OTC and DC, 83% for TC, 81% for CTC and 72% for MTC (82).

The same extraction medium was used for the isolation of TC, OTC and CTC from animal tissues, milk and cheese (48), for TC, OTC, CTC and DC from shrimps (54), for OTC from three species of marine shellfish (36), for

**Table 5.** Extraction recoveries of the examined TCs from spiked bovine muscle tissue (1 g) using different buffer solutions prior to SPE (64)

| Analytes | Acetate buffer 0.1 M, pH = 4 | Acetate buffer 0.1 M, pH = 5 | McIlvaine buffer, pH = 4 | 0.1 M $\text{Na}_2\text{EDTA}$ /McIlvaine buffer, pH = 4 | Citrate buffer 0.3 M, pH = 4 |
|----------|------------------------------|------------------------------|--------------------------|----------------------------------------------------------|------------------------------|
| MNC      | 12.4                         | 18.0                         | 54.7                     | 55.3                                                     | 86.4                         |
| OTC      | 37.8                         | 19.0                         | 72.3                     | 50.8                                                     | 104.7                        |
| TC       | 19.3                         | 11.7                         | 71.0                     | 61.7                                                     | 94.4                         |
| CTC      | 32.0                         | 43.6                         | 65.9                     | 57.0                                                     | 92.2                         |
| DC       | 28.6                         | 18.8                         | 70.9                     | 62.6                                                     | 107.6                        |



**Figure 6.** Extraction procedure for the isolation and cleanup of TCs from animal tissues using SPE.

TC, OTC and CTC from bovine and porcine muscle (56), for TC, OTC, CTC, DC, MTC, DMC and MNC from honey (71), for TC, OTC, CTC and DC from liver (47) for OTC, TC and CTC from bovine tissues (73), for TC, OTC, CTC and DC from tissues, milk and egg (83), for TC, OTC, CTC and DC from bovine tissues (86), for OTC, EOTC,  $\alpha$ -apoOTC,  $\beta$ -apoOTC from porcine muscle and water (68), as well as for TC, OTC, CTC and DC from tissues (72). Relevant recovery results are shown in Tables 2–4.

TC and OTC were extracted from different tissue samples (bovine, swine and chicken) with 10 mM Na<sub>2</sub>EDTA/McIlvaine (pH 4)/CH<sub>3</sub>OH (3:7). SPE

was performed on C<sub>18</sub> and SCX cartridges. Recovery ranging from 62 to 87% was dependent on matrix type as shown in Table 2 (81).

Dilution with water 1:5 v/v and SPE on ISOLUTE-C<sub>8</sub> was used for the extraction of TC, OTC, CTC and DC from milk, providing high recovery rates (80.8–95.5%) (35). A two-step chemical extraction with 20% TCA, and McIlvaine buffer and SPE on HLB Oasis cartridges was applied for the extraction of TC, OTC, CTC and DC from bovine milk and muscle. Recovery rates were 84.3–84.9% for OTC, 81.8–84.6 for TC, 83.1–89.5% for CTC and 84.2–84.9% for DC (65). Citrate buffer 1 M, pH 4, was used for chicken liver and ethyl acetate for the extraction of TC, OTC, CTC and DMC from eggs and animal tissues. Column switching was used (74).

The combination of extraction with 0.1 M sodium succinate buffer (pH 4), MCAC and extraction with SDB-RPS cation exchange membranes was applied for the isolation of TC, OTC, CTC and DC from eggs and animal tissues. Percentage recovery was in the range 37–50 for egg samples, 45–60 for pork kidney, 53–69 for pork muscles and 39–66 for bovine liver (75). Liquid-liquid extraction was applied to lipid fraction removal with hexane for the isolation of DC from milk samples prior to TLC analysis. Recovery achieved was 98.2–101.2% (85).

TC, OTC, CTC, ICTC, N-DMCTC, N-DMOTC and 4-N-DMICTC were extracted from eggs using 0.3 M sodium citrate buffer and on-line dialysis using a modified ASTED system, on-line SPE on PLRP-S 70  $\mu$ m, (70). TC, OTC, CTC and their 4-epimers were isolated from eggs and environmental samples extracted with 1 M citrate buffer (pH 5) (51). Succinate buffer 0.1 M was applied to the extraction of TC, OTC and CTC from shrimps and milk and further cleanup by SPE using Oasis cartridges (67).

TC, OTC, CTC and DMC were extracted from animal tissues with 0.1 M succinate buffer (pH = 4) and with succinate buffer pH = 4.0 containing 3.72% EDTA and 0.3% pentanesulphonic acid. SPE C<sub>8</sub> or XAD-2 resins and on-line MCAC were used (77). TC, OTC, CTC, and DC were extracted from pork and chicken meat with 0.1 M sodium succinate buffer (pH = 4). Further cleanup was performed by MCAC and extraction with SDB-RPS cation exchange membranes (49). A similar procedure was applied to the extraction of TC, OTC, CTC, DC, DMC and MNC from milk and shrimps with cleanup, desalting and concentration using MCAC and SPE on Supelclean ENVI-Chrom P cartridges (80).

TC, OTC, CTC, DC, MTC and DMC were extracted from kidney with 0.05 M succinate buffer/3.7% Na<sub>2</sub>EDTA (pH = 4). Further purification was achieved using MCAC and SPE on C<sub>18</sub> (70). TC, OTC, CTC, DC and 4-epimers were extracted from pig tissues with 0.1 M succinate buffer (pH = 4), 20% (w/v) TCA, and further cleanup on SPE C<sub>8</sub> and Oasis (76).

OTC, TC, CTC and epimers as well as TC, CTC and epimers were extracted from animal feed and bones with succinate buffer (pH = 4) or 1 M HCl. MCAC and SPE C<sub>18</sub> are further applied respectively (40, 41). OTC, TC and CTC were extracted from animal tissues with 1 M oxalic acid and ACN and SPE on SDB cartridges (78).

TC, OTC, CTC, DC, MTC, DMC and MNC were extracted from milk with succinate buffer (pH = 4). For further cleanup MCAC and ultrafiltration were applied. Extraction recoveries ranged from 63 to 91% (79). The same buffer was used for the extraction of TC, OTC, CTC, DC and 4-epimers from honey. SPE with oasis HLB was further applied (60). OTC from fish feed was extracted with ethyl acetate, 0.01 M EDTA and SPE on C<sub>18</sub> (44). OTC and TC, CTC, ETC, ECTC were extracted from animal bones with 1 M HCl. XAD-2 resins were used for further purification (38).

TC, OTC and CTC were extracted from animal tissues with H<sub>2</sub>O, ACN, 0.1 M H<sub>3</sub>PO<sub>4</sub>. Liquid-liquid extraction with hexane and CH<sub>2</sub>Cl<sub>2</sub> was applied to the extraction of OTC, TC and CTC from pork tissues, kidney and liver. High recovery rates were noticed 92–110% (50). MNC was extracted from bovine tissues and serum with H<sub>2</sub>O and SPE C<sub>18</sub> (52).

TC, ETC, ATC and EATC were extracted from animal feed with 1 M HCl (at 133 and 100°C). Further cleanup was achieved by MCAC on a chelating sepharose column and SPE on C<sub>18</sub> cartridges (37). TC, OTC and CTC were extracted from eggs and honey with Tetrasensor kit buffer (53). TC, OTC, CTC, DC, MTC were extracted from milk with 1 M HCl 89–96% (43). DC was extracted from turkey plasma with 6% w/v ascorbic acid and phosphate sulphite buffer (pH 6) and ethyl acetate (39). OTC, TC, CTC, DC, MNC, and epimers were extracted from animal feeds with 1:1 ACN/H<sub>2</sub>O at pH = 3 with 0.01 M citric acid (42).

OTC, TC and MTC were extracted from honey with 2% citric acid solution (pH = 4.5 with 40% NaOH). Further purification was performed using XAD-2 resins (61). TC, OTC, CTC and DC were extracted from shrimps with 0.1 M H<sub>3</sub>PO<sub>4</sub> and ACN, and LLE with hexane and dichloromethane (55). TC was extracted from swine tissues (muscles and kidney) with ACN/1 M imidazol buffer with 10 mM Na<sub>2</sub>EDTA and 50 mM magnesium acetate (15:85 v/v) and ultrafiltration (45). OTC was extracted from fish feed with ethyl acetate, 0.01 M EDTA. SPE on C<sub>18</sub> lead to a high recovery in the range 93.6–98.1 (44).

TC, OTC, CTC and DMC were extracted from animal tissues with 0.1 M succinate buffer (pH = 4), containing 3.72% EDTA and 0.3% pentanesulphonic acid. SPE C<sub>8</sub> or XAD-2 resins and on-line MCAC with SPE C<sub>18</sub> were used for further sample preparation (77).

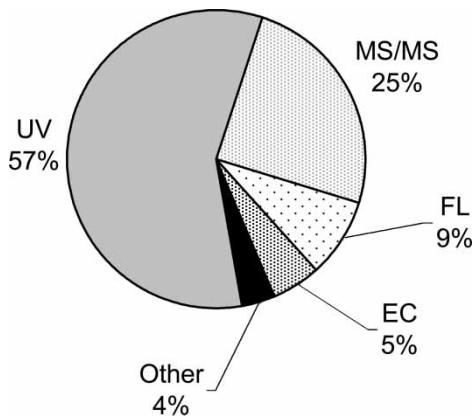
TC, OTC, CTC, ICTC, N-DMCTC, N-DMOTC, and 4-N-DMICTC were extracted from eggs with 0.3 M sodium citrate buffer. On-line dialysis was subsequently performed by on-line SPE, PLRP-S 70 µm (70).

OTC, TC, CTC and epimers were extracted from animal feed and bones with succinate buffer (pH = 4) or 1 M HCl. Further cleanup was performed by MCAC and SPE on C<sub>18</sub> (40). Similar conditions were applied for TC, CTC and epimers extraction from animal bones (41).

TC, OTC and CTC were extracted from shrimps and milk with 0.1 M succinate buffer and isolated by SPE using Oasis cartridges (67). TC, OTC, and CTC from tissues were extracted with 0.02 M HCl–0.1 M Na<sub>2</sub>EDTA,

at 98°C. LLE with methylene chloride was further applied (46). OTC, TC and CTC were extracted from bovine tissues (liver, kidney and muscle) with 0.1 M Na<sub>2</sub>EDTA/McIlvaine buffer (pH 4). Further cleanup was achieved by SPE C<sub>18</sub> Bond Elut (73).

CTC from poultry/swine feeds was extracted with 4 M HCl-acetone-H<sub>2</sub>O (1:8:6 v/v/v), SPE C<sub>18</sub>. Additional cleanup for CTC was performed by LLE with methylene chloride (57). OTC, TC and CTC from tissues were extracted with glycine-HCl buffer and SPE, on cyclohexyl end-capped cartridges (62).


Two molecularly imprinted polymers (MIPs) were synthesized using TC and OTC antibiotics as template molecules in non-covalent molecular imprinting procedures. After a chromatographic evaluation, the performance of the MIPs as selective SPE sorbents was evaluated. Extraction recovery from pig kidney tissue extract was 66–69%. The polymers were prepared by the non-covalent approach using TC and OTC as the template molecules, respectively. The same functional monomer (MAA) was used in both polymerisations but the porogenic solvents were different. The pre-polymerisation mixture for the tetracycline MIP comprised TC, MAA, the cross-linking monomer EGDMA and the initiator AIBN dissolved in the porogen, acetonitrile in a 25 mL thick-walled glass tube. Prior to MISPE pig kidney tissue was extracted with EDTA-McIlvaine's buffer (34).

TC, OTC, DMC, MNC, ATC, EATC and MTC were extracted from milk by SPME using 50 µm Carbowax/templated resins (58). TC, OTC, CTC were extracted from milk samples after centrifugation using M.W. cutoff system. Further purification was achieved by SPE on C<sub>18</sub> Varian cartridges (59). TC, CTC, ETC and ECTC were extracted from animal bones with 1 M HCl. For further purification XAD-2 resins were used (38). TC, OTC, CTC, DC, MTC and DMC were extracted from kidney with 0.05 M succinate buffer/3.7% Na<sub>2</sub>EDTA (pH = 4). Further cleanup was achieved by MCAC and SPE on C<sub>18</sub>(69). OTC from catfish was extracted with 50° TCA, 1 M HCl and Na<sub>2</sub>EDTA. SPE on Sep-Pack C<sub>18</sub> was subsequently applied with high recovery 92.9% (87).

TC, OTC, CTC, DMC, ETC and EATC were extracted from milk and plasma after precipitation of proteins with 10% TCA. SPE was performed using MPI microcolumns (88). TC, OTC, CTC and Fluoroquinolones were extracted from chicken tissues with 1% acetic acid (89). TC and OTC were extracted from honey with citric acid (pH 4). XAD-2 resins were further used (97). Ultrafiltration was used for the extraction of TC, OTC and CTC from animal (bovine and swine) muscle, kidney, and liver using ultrafree MC/PL membranes (63).

### Detection Techniques

UV detection in various wavelengths is the dominant detection technique applied in the 57% of the reviewed papers as shown in Figure 7. However,



**Figure 7.** Percentage distribution of detection techniques used in TC determination in food samples.

the last 8 years the use of mass spectrometry is significantly increased (25%). Fluorescence and electrochemical detection are used to a lesser extent.

UV detection is employed mainly at wavelengths within the range 350–370 nm. More specifically TC, OTC and CTC are determined in animal tissues at 370 nm (50) as well as CTC in poultry/swine feeds (57) and TC, OTC, CTC in shrimps and milk with LOD values 50–400 µg/kg (67).

TC, OTC, CTC and DC are determined in bovine milk and muscle at 365 nm with an LOD of 0.1–5 ng/mL (65). At the same wavelength OTC is determined in fish feed with LOD of 10 ng/g (44), TC, OTC, CTC, DC, MTC and DMC in kidney with LOD values of 4 µg/mL for OTC and TC and 12 µg/mL for CTC, DC, MTC, DMC (69), as well as TC, OTC and CTC in bovine and porcine muscle with 10 ng/g as LOD (56).

OTC, TC, CTC, DC, MNC and epimers isolated from animal feeds were monitored at DAD 364 nm yielding LOD values of 0.1–0.4 µg/g (42).

A significant number of papers determine TCs at 360 nm. OTC, TC, CTC, epimers in animal feed and bones were determined with LOD values 0.5 µg/kg for OTC and TC and 1 µg/kg for CTC (40), 0.05 mg/kg for OTC in animal bones (38). TC, CTC, ETC, ECTC in animal bones (50) and TC, ETC, ATC, EATC in animal feed were monitored at the same wavelength as well (37). TC, CTC, epimers in animal bones were measured with LOD values 1.5 µg/kg for TC and 5 µg/kg for CTC (41), OTC, TC and CTC in animal tissues 20–1000 ng/g with LOD values 10 ng/g for OTC, TC in tissues and 15 ng/g for CTC. Respective values for kidney and liver are 25 ng/g for CTC and 20 ng/g for OTC and TC (78).

OTC was determined in three species of marine shellfish at 355 nm with linear range: 0.1–1.5 µg/g (36) while TC, OTC, CTC, DC, MTC, DMC and MNC in milk with LOD within the range 0.42–1.27 ng/mL (79).

OTC, TC, CTC, DC and MNC were determined in bovine muscle at 351 nm. Achieved method's LOQ values were 40  $\mu\text{g}/\text{kg}$  for MNC, CTC and DC and 25  $\mu\text{g}/\text{kg}$  for OTC and TC. The decision limits ( $\text{CC}\alpha$ ) were in the range 104.7–109.8  $\mu\text{g}/\text{kg}$ , detection capability ( $\text{CC}\beta$ ) was in the range 108.4–116.7  $\mu\text{g}/\text{kg}$  for all compounds (64).

The majority of developed methods determined TCs at 350 nm. TC, OTC, CTC, DMC in eggs and animal tissues were determined with LOD values 10–100  $\mu\text{g}/\text{kg}$  for OTC, 16–100  $\mu\text{g}/\text{kg}$  for TC and DMC and 20–10  $\mu\text{g}/\text{kg}$  for CTC (74) as well as MNC in bovine tissues and serum with LOD: 100 ng/ $\mu\text{L}$  (52), TC, OTC, CTC and DMC in animal tissues with LOD values 10  $\mu\text{g}/\text{kg}$  for OTC and TC and 20  $\mu\text{g}/\text{kg}$  for CTC and DMC (77), DC in turkey plasma with LOD: 0.2  $\mu\text{g}/\text{mL}$  (39), TC, OTC, CTC, DC, MTC, DMC and MNC in honey (71), TC, OTC, CTC, DC in liver with LOD values of 0.05 ng/ $\mu\text{L}$  (47), as well as OTC, EOTC,  $\alpha$ -apoOTC,  $\beta$ -apoOTC in porcine muscle and water. Monitoring of  $\alpha$ - and  $\beta$ -apoOTC and EOTC at 250 nm yielded LOD values 40 ng/mL for  $\alpha$ - and  $\beta$ -apoOTC and OTC, 20 ng/mL for EOTC, 50 ng/mL for  $\alpha$ -apoOTC, 140 ng/mL for  $\beta$ -apoOTC: (68).

TC, OTC, CTC, DC, MNC and MTC in honey were determined at 270 and 350 nm with LOD values of 50–650 ng/mL for MNC, OTC, TC and 100–850 ng/mL for CTC, MTC and DC (82).

OTC, TC and MTC in honey using DAD were monitored at 274 nm for OTC and TC and 350 nm for MTC leading to a linear range: 8–800 ng/mL (61). TC, OTC, CTC and DC detection in milk at 267 nm gave an LOQ of 0.1  $\mu\text{g}/\text{mL}$  (35). TC, OTC and CTC in tissues were also determined at 254 nm (46).

Electrospray-MS/MS detection technique has been used for TC, OTC and CTC in shrimps, and milk with LOD values 25–400  $\mu\text{g}/\text{kg}$  and 50–400  $\mu\text{g}/\text{kg}$  respectively, (67). Same technique was applied for TC, ETC, ATC and EATC in animal feed (37), for TC, OTC, CTC, DC 4-epimers in honey with linear range: 0–100  $\mu\text{g}/\text{kg}$  (60). For TC, OTC, DMC, MNC, ATC, EATC and MTC in milk LOD values obtained were 14 ng/mL for TC, 30 ng/mL for OTC, 9 ng/mL for DMC, 40 ng/mL for MNC, 4 ng/mL for ATC, and EATC and 6 ng/mL for MTC. In milk samples the LOD was 100 ppb (58). For CTC determination in swine plasma and water linear range was 20–2000 ng/mL (66). OTC, TC and CTC in bovine tissues (73) and TC, OTC, CTC, DC, 4-epimers in pig tissues were also determined by ESI-MS/MS (positive ion mode) with LOD values: 0.5–4.5 ng/g (76) TC, OTC and CTC in honey and eggs with respective LOD values 25  $\mu\text{g}/\text{kg}$  and 125  $\mu\text{g}/\text{kg}$  (53). TC, OTC, CTC and their 4-epimers in eggs and environmental samples by microbiology assay using *S. aureus* in brain–heart broth middle (pH = 5.9) and photometrical detection at 595 nm and ESI-MS/MS provided LOD values 150  $\mu\text{g}/\text{kg}$  and 20  $\mu\text{g}/\text{kg}$  respectively (51). TC, CTC, OTC were determined in animal (bovine and swine) muscle, kidney, and liver by ESI-MS-MS with LOD 0.002 ppm (63).

Particle beam PB-MS/MS detection technique is applied for TC, OTC, CTC, DC, DMC and MNC in milk and shrimp (80) as well as for TC, OTC and CTC in milk with LOD value 100 ng/mL (59). APCI-MS/MS detection is applied for OTC, TC and CTC in tissues with LOD value 10 ng/g in muscles and 20 ng/g in kidney (62), for TC, OTC, CTC and DC in tissues with LOD values 0.001 ppm for OTC, TC, 0.004 ppm for CTC and 0.002 ppm for DC (72).

Electrochemical detection is used for the determination of TC, OTC, CTC and DC in shrimps by mixed valent Ru oxide-Ru cyanide glassy carbon electrode (1.1 V) with LOD 0.1 ng/µL for OTC and 0.5 ng/µL for TC and CTC (55). TC, OTC, CTC and DC in shrimps by electrochemical detection with a boron-doped diamond thin film electrode (1.4 V) yielded LOD values 0.01 ng/µL for OTC and TC and 0.05 ng/µL for CTC and DC (54). Electrochemical detection is also used for the determination of TC, OTC, CTC, DC, and MTC in milk with LOD values: 12.5 ng/mL for OTC, 20 ng/mL for TC, 25 ng/mL for DC and CTC and 10 ng/mL for MTC (43).

Fluorescence detection is used for TC determination in swine tissues with  $\lambda_{exc} = 380$  nm, and  $\lambda_{em} = 520$  nm with LOD and LOQ values 0.04 µg/g and 0.05 µg/g respectively (45), TC and OTC in tissue samples (from  $\lambda_{exc} = 350$  nm,  $\lambda_{em} = 420$  nm to  $\lambda_{exc} = 374$  nm,  $\lambda_{em} = 506$  nm in 7 min), 2–40 ng for OTC 1–40 ng for TC (81) as well as for TC, OTC, CTC and DC in pork and chicken meat. In the latter method, fluorescence was induced by complexation of TCs with 5% m/v zirconyl chloride octahydrate. Detection was achieved at  $\lambda_{exc} = 350$  nm and  $\lambda_{em} = 420$  nm yielding an LOD: 0.42–1.38 µg/kg. Results were also confirmed by ESI-MS/MS (49). TC, OTC, CTC and DC in eggs and animal tissues were determined at  $\lambda_{exc} = 406$  nm,  $\lambda_{em} = 515$  nm after post-column addition of 5% (m/v) zirconyl chloride octahydrate. LOD values obtained are 2–1000 µg/kg for OTC, 3–1000 µg/kg for TC, 4–1000 µg/kg for CTC and 5–1000 µg/kg for DC (75).

Chemiluminescence is applied for the determination of OTC, TC and MTC in honey. Chemiluminescence detection was applied with potassium permanganate-sodium sulfite- $\beta$ -cyclodextrin. LOD values achieved are 3 ng/mL for OTC, 5 ng/mL for TC and 0.9 ng/mL for MTC: (61). TC, OTC, CTC, ICTC, N-DMCTC, N-DMOTC, 4-N-DMICTC were determined in eggs using different detection modes: UV (310 and 360 nm), FL ( $\lambda_{exc} = 350$  nm,  $\lambda_{em} = 420$  nm) after post-column addition of 0.4 M glycine buffer pH 12 and ESI-MS/MS. (70).

### Method Validation-Validation Criteria

In the majority of the published methods the analytical procedure is validated in terms of various parameters such as linearity, accuracy, precision, specificity, selectivity, sensitivity, limit of quantification (LOQ), limit of detection (LOD), applicability and robustness or ruggedness.

Linearity of the method is usually checked using spiked blank tissue samples. For each calibration curve, a number of different concentration levels are used usually six, including a zero level and/or not the MRL level. Peak areas of TCs or peak area ratios between TCs and IS are plotted against concentrations and linear regression analysis is performed. The accuracy defined as the closeness of agreement between the true value and the mean results of a series of experiments ( $n = 6$ ) is usually determined by analyzing a number, usually six, blank tissue samples spiked at the same concentration level and by comparing the measured concentration to the spiked concentration.

The precision defined as the “within laboratory repeatability” can be divided into repeatability and intermediate precision since it includes the use of the same method on identical test material, in the same laboratory by the same operator using the same equipment within short intervals of time. It is expressed as the relative standard deviation (RSD, in %), being the ratio between the standard deviation (SD) and the mean found concentration (in %). The “within-run or within-day” precision was determined on the same samples as for the accuracy, while the “between-day” precision was determined on blank tissue samples spiked at the MRL level and analyzed on different days. Both accuracy and precision are evaluated at three different concentrations. The precision of the method was determined by calculating the relative standard deviation (RSD, %) for the repeated measurements. The accuracy of the method (expressed as the relative error RE, %) is determined by assessing the agreement between the measured and nominal concentrations of analysed samples. The recoveries are obtained by spiking food samples at three different concentrations and then by analysing the samples six times on three different days ( $n = 18$ ).

Linearity is studied by matrix samples fortified with a series of mixed standards of the five TCs, covering the entire working range. Calibration curves are constructed with these samples, injected at least three times, using analyte/internal standard peak area ratio. Precision and accuracy expressed in terms of TCs recovery from food sample. Recovery is calculated as the percentage of the found mass of the analyte on the spiked sample towards the mass that was initially spiked and was tested after replicate analysis of spiked samples in various concentrations.

The limit of quantification (LOQ) is defined as the lowest concentration for which the method is validated with accuracy and precision within the specified ranges. Moreover, as recommended by the EU, the LOQ has to be at least equal to half the MRL. The limit of detection (LOD) is defined as the lowest measured content from which it is possible to deduce the presence of the analyte with reasonable statistical certainty. The specificity was evaluated by the analysis of blank tissue samples. The absence of the possible interference of endogenous compounds with the same retention time, as well as the absence of the possible interference of other compounds belonging to the same class of compounds as the analyte, was demonstrated.

In compliance with the draft SANCO/1805/2000 revision (99), the validation procedure includes the determination of detection limit ( $CC\alpha$ ), detection capability ( $CC\beta$ ), and specificity for the quantitative confirmation method.  $CC\alpha$  is defined as: "the concentration above which it can be determined with a statistical certainty of  $1 - \alpha$  that the identified analyte content is truly above MRL."  $CC\alpha$  is calculated by spiking 20 blank samples at MRL (100 µg/kg in the case of TCs).  $CC\beta$  is "the concentration at which the method is able to detect MRL concentrations with a statistical certainty of  $1 - \beta$ . The  $\beta$  error should be less than or equal to 5%.  $CC\beta$  was calculated by analysing 20 blank spiked samples at corresponding  $CC\alpha$  level for each analyte in both matrices.

The decision limit,  $CCa$ , is calculated as the mean measured concentration at the MRL (100 µg/kg tissue) plus 1.64 times the standard deviation of within-day precision at this concentration. The detection capability,  $CC\beta$ , was calculated as  $CCa$  plus 1.64 times the standard deviation of within-day repeatability at  $CCa$ . Statistical analysis was performed at the 95% confidential level and the number of replicate analyses was 20.

From the published methods only a limited number of papers on the quantitative determination of the tetracyclines propose methods validated by a set of parameters which are in compliance with the recommendations as defined by a regulatory agency. More specifically Cherlet et al. in their article (76) on the quantitative multi-residue analysis of tetracyclines and their 4-epimers in pig tissues by HPLC-ESI-MS, validated the proposed method for the quantitative determination of the tetracyclines by a set of parameters which are in compliance with the recommendations with the requirements as defined in the Rules Governing Medicinal Products in the European Community as defined by the EC (98, 99).

Cinquina et al. in their article "Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle," validated the method in compliance with requirements set by draft SANCO/1805/2000 European Decision (65).

Blanchflower et al. in their article "Confirmatory assay for the determination of tetracycline, oxytetracycline, chlortetracycline and its isomers in muscle and kidney using liquid chromatography-mass spectrometry," validated their method at the maximum residue limit, the maximum residue limit as well as at two times the maximum residue limit (62).

Andersen et al. in their article (67) on the determination of tetracycline residues in shrimp and whole milk using liquid chromatography with ultra-violet detection and residue confirmation by mass spectrometry proposed two methods designed to simplify sample extraction and cleanup steps and to be fast and convenient for routine testing in a regulatory environment. The objective of this study was to develop a method that would be simple and fast for routine regulatory analysis of the three tetracycline residues

OTC, TC, and CTC in shrimp and whole milk. Regulatory aspects that were taken into consideration include the U.S. Code of Federal Regulations, Title 21, Part 556, Sections 150, 500, and 720. U.S. Government Printing Office, Washington, DC, 2003 (Chapter 1), as well as The European Agency for the Evaluation of Medicinal Products, EMEA/MRL/023/95 (99).

Alfredsson et al. in their article "Simple and rapid screening and confirmation of tetracyclines in honey and egg by a dipstick test and LC-MS/MS" did not evaluate the method as a quantitative one, since the use of tetracyclines is illegal in honey production. Therefore, the confirmation method has just to fulfil the confirmation criteria according to Commission Decision 2002/657/EC (53).

Samanidou et al. in their article "Development and validation of an HPLC confirmatory method for the determination of tetracycline antibiotics residues in bovine muscle according to the European Union regulation 2002/657/EC," performed the validation of the method they propose according to the European Union regulation 2002/657/EC determining selectivity, stability, decision limit, detection capability, accuracy and precision using spiked samples at various concentrations (64).

### Trends in the TCs Analysis in Food Samples of Animal Origin

After a thorough study of the literature, from the up to now published methods for the determination of TCs in foodstuffs of animal origin, an increase can be noticed by time, especially after 1995. The majority of the analytical techniques used for that purpose are separation techniques (80%), among which HPLC is the most frequently used.

From the various HPLC methods developed so far about 60% use columns with C<sub>18</sub> cartridges and 21% C<sub>8</sub>. The use of ACN as an organic modifier in mobile phase and addition of oxalic acid for better separation are usual practices, with very few exceptions using other buffers, like citric acid, formic acid or THF. As regards with the detection techniques, UV detectors are used in percentage larger than 50%, while the last 8 years the use of mass spectrometry is significantly increased (20%).

About 50% of the developed methods presented in Tables 2-4 are applied to tissue samples of various animals, while milk, honey and animal feed samples possess a quite important percentage, about 10% each one. In most of these methods, three or four tetracyclines are separated, TC, OTC, CTC and DC above all, as these drugs are used in veterinary medicine. Many different acid buffers are used for the extraction of TCs from the matrix of samples, like McIlvaine buffer (25%), succinate buffer (18%), citrate buffer (10%), HCl (14%) and H<sub>3</sub>PO<sub>4</sub> (5%). Solid phase extraction (SPE) is the most frequently used (50%) technique for cleaning up these extracts. Other techniques used are liquid/liquid extraction (20%) and metal chelate affinity chromatography (15%).

## CONCLUDING REMARKS

The use of tetracyclines has become a serious problem as regards with infectious diseases, since they leave residues in food products of animal origin such as milk, eggs or meat which can be directly toxic or else cause allergic reactions in some hypersensitive individuals. Even low-level doses of antibiotic in foodstuffs consumed for long periods can lead to problems regarding the spread of drug-resistant micro-organisms. In the present paper the methods for the determination of tetracyclines in foodproducts of animal origin are reviewed and comparatively presented. HPLC is the predominant technique used for this purpose. Method development however must be followed by method validation according to regulatory agencies in order to obtain methods that can be readily applied by authorised laboratories that execute analyses of food samples to ensure the protection of human health. Anyway concerning the Europoean Union all methods currently applied for the analysis of official samples of the substances in group B of Annex I of Council Directive 96/23/EC will have to comply with the decision 2002/657/EC by the 1st of September 2007.

## ABBREVIATIONS

|        |                             |
|--------|-----------------------------|
| 4-ECTC | Epi-chlortetracycline       |
| 4-EDC  | Epi-doxycycline             |
| 4-EOTC | Epi-oxytetracycline         |
| 4-ETC  | Epi-tetracycline            |
| ACN    | Acetonitrile                |
| ACTC   | Anhydro-chlortetracycline   |
| Activ. | Activated                   |
| ADCTC  | 2-acetyl-2decarboxamido CTC |
| Add.   | Addition                    |
| ADI    | Acceptable daily intake     |
| Adj.   | Adjusted                    |
| ADOTC  | 2-acetyl-2decarboxamido OTC |
| ADTC   | 2-acetyl-2decarboxamido TC  |
| AIBN   | 2,2'-azobisisobutyronitrile |
| AOTC   | Anhydro-oxytetracycline     |
| ATC    | Anhydro-tetracycline        |
| buff.  | Buffer solution             |
| CE     | Capillary electrophoresis   |
| Centr. | Centrifugation              |
| CL     | Chemiluminescence           |
| Conc.  | Concentrated                |
| CTC    | Chlortetracycline           |
| DC     | Doxycycline                 |

|           |                                                       |
|-----------|-------------------------------------------------------|
| Dens.     | Densitometry                                          |
| Det.      | Detection                                             |
| Dil.      | Dilution                                              |
| DMC       | Demeclocycline                                        |
| EACTC     | Epi-anhydro-chlortetracycline                         |
| EAOTC     | Epi-anhydro-oxytetracycline                           |
| EATC      | Epi-anhydro-tetracycline                              |
| ECL       | Electrochemiluminescence                              |
| EGDMA     | Ethylene glycol dimethacrylate                        |
| El.       | Eluent/elution                                        |
| Electr.   | Electrochemical                                       |
| endc.     | End-capped                                            |
| ESI       | Electrospray ionization                               |
| EU        | European Union                                        |
| Evap.     | Evaporation                                           |
| Extr.     | Extraction                                            |
| FDA       | Food and Drug Administration                          |
| Filt.     | Filtration                                            |
| FL        | Fluorescence                                          |
| Fluor.    | Fluorimetry                                           |
| FR        | Flow rate                                             |
| FSIS      | Food Safety and Inspection Service                    |
| Grad. El. | Gradient elution                                      |
| HFBA      | Heptafluorobutyric acid                               |
| Homog.    | Homogenization                                        |
| ICTC      | Iso-chlortetracycline                                 |
| Incub.    | Incubation                                            |
| Inj.      | Injection                                             |
| IOM       | Institute of Medicine                                 |
| IOTC      | Iso-oxytetracycline                                   |
| IPA       | Isopropanol                                           |
| IS        | Internal Standard                                     |
| Is. El.   | Isocratic elution                                     |
| LLE       | Liquid liquid extraction                              |
| LR        | Linear Range                                          |
| MAA       | Methacrylic acid                                      |
| MCAC      | Metal chelate affinity chromatography                 |
| Meas.     | Measurement                                           |
| Microb.   | Microbiological                                       |
| MIP       | Molecularly imprinted polymers                        |
| MISPE     | Molecularly imprinted polymers-solid phase extraction |
| Mix.      | Mixing                                                |
| MNC       | Minocycline                                           |
| MP        | Mobile phase                                          |

|                 |                                         |
|-----------------|-----------------------------------------|
| MTC             | Methacycline                            |
| N-DMCTC         | N-desmethyl-chlortetracycline           |
| N-DMOTC         | N-desmethyl-oxytetracycline             |
| OTC             | Oxytetracycline                         |
| Precip.         | Precipitation                           |
| Pre-dev.        | Pre-developed                           |
| PS-DVB          | Polystyrene-divinylbenzene              |
| Recons.         | Reconstitution                          |
| Sol.            | Solution                                |
| Sonic.          | Sonication                              |
| SPE             | Solid phase extraction                  |
| SPME            | Solid phase microextraction             |
| TC              | Tetracycline                            |
| TCA             | Trichloroacetic acid                    |
| TEA             | Triethanolamine                         |
| TFA             | Trifluoroacetic acid                    |
| THF             | Tetrahydrofuran                         |
| TMA             | Tetramethylammonium                     |
| UCS             | Union of Concerned Scientists           |
| Ultrafilt.      | Ultrafiltration                         |
| USDA            | United States Department of Agriculture |
| USP             | United States Pharmacopeia              |
| $\alpha$ -APOTC | $\alpha$ -apo-oxytetracycline           |
| $\beta$ -APOTC  | $\beta$ -apo-oxytetracycline            |

## REFERENCES

1. <http://www.moleculeofthemonth.com>, 25/08/2005.
2. <http://www.sitemaker.unic.edu.com>, 18/03/2005.
3. <http://www.usp.com>, 05/05/2005.
4. Botsoglou, N.A. and Fletouris, D.J. (ed.), (2001) *Drug Residue in Foods*. Marcel Dekker: New York.
5. <http://www.chm.bris.ac.uk/motm/tetracycline/relat.htm>, 2/9/2005.
6. Barker, S.A. and Walker, C.C. (1992) Chromatographic methods for tetracycline analysis in foods. *J. Chromatogr.*, 624: 195–209.
7. Shaikh, B. and Moats, W.A. (1993) Liquid chromatographic analysis of antibacterial drug residues in food products of animal origin. *J. Chromatogr. A*, 643 (1–2): 369–378.
8. Niessen, W.M.A. (1998) Analysis of antibiotics by liquid chromatography–mass spectrometry. *J. Chromatogr. A*, 812: 53–75.
9. Oka, H., Ito, Y., Yoshimoto, I., Kagami, T., and Harada, K. (1998) Mass spectrometric analysis of tetracycline antibiotics in foods. *J. Chromatogr. A*, 812: 309–319.
10. Schenk, F.J. and Callery, P.S. (1998) Chromatographic methods of analysis of antibiotics in milk. *J. Chromatogr. A*, 812: 99–109.

11. Fedeniuk, R.W. and Shand, P.J. (1998) Theory and methodology of antibiotic extraction from biomatrices. *J. Chromatogr. A*, 812: 3–15.
12. Marzo, A. and Dal Bo, L. (1998) Chromatography as an analytical tool for selected antibiotic classes: A reappraisal addressed to pharmacokinetic applications. *J. Chromatogr. A*, 812: 17.
13. Oka, H., Ito, Y., and Matsumoto, H. (2000) Chromatographic analysis of tetracycline antibiotics in foods. *J. Chromatogr. A*, 882: 109–133.
14. Di Corcia, A. and Nazzari, M. (2002) Liquid chromatographic–mass spectrometric methods for analysing antibiotic and antibacterial agents in animal food products. *J. Chromatogr. A*, 974: 53–89.
15. Joshi, S. (2002) HPLC separation of antibiotics present in formulated and unformulated samples. *J. Pharm. Biomed. Anal.*, 28: 795–809.
16. McEvoy, J.D.G. (2002) Contamination of animal feeding stuffs as a cause of residues in food; A review of regulatory aspects, incidence and control. *Anal. Chim. Acta*, 473: 3–26.
17. Hernandez, M., Borrull, F., and Callul, M. (2003) Analysis of antibiotics in biological samples by capillary electrophoresis. *Trend Anal. Chem.*, 22 (7): 416–427.
18. Michalova, E., Novotna, P., and Schlegelova, J. (2004) Tetracyclines in veterinary medicine and bacterial resistance to them. *Vet. Med. Czech.*, 49 (3): 79–100.
19. Smyth, W.F. and Brooks, P. (2004) A critical evaluation of high performance liquid chromatography–electrospray ionisation–mass spectrometry and capillary electrophoresis–electrospray–mass spectrometry for the detection and determination of small molecules of significance in clinical and forensic science. *Electrophoresis*, 25: 1413–1446.
20. Anderson, C.R., Rupp, H.S., and Wu, W. (2005) Complexities in tetracycline analysis—chemistry, matrix extraction, cleanup, and liquid chromatography. *J. Chromatogr. A*, 1075: 23–32.
21. Chopra, J. and Roberts, M. (2001) Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. *Microbiol. Mol. Biol. Rev.*, 65: 232–260.
22. <http://www.eof.gr>, 13/02/2005.
23. <http://www.emea.eu.int.com>, EMEA (The European Agency for the Evaluation of Medicinal Products) (1999): Antibiotic Resistance in the European Union Associated with Therapeutic use of Veterinary Medicines. Report and Qualitative Risks Assessment by the Committee for Veterinary Medicinal Products.
24. 524/70/EC. Council Directive of 23 November 1970 concerning additives in feeding – stuffs, Brussels, Belgium. *Off. J. Eur. Commun.*, 1970, L270: 1–17.
25. 2377/90/EC. Council Regulation (EEC) of 26 June 1990 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin, Brussels, Belgium. *Off. J. Eur. Commun.*, 1990, L224: 1–124.
26. 96/23/EC. Council Directive of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. *Off. J. Eur. Commun.*, 1996, L125: 10–32.
27. 657/2002/EC. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. *Off. J. Eur. Commun.*, 2002, L221: 8–36.
28. Stolker, A. and Brinkman, U. (2005) Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals. *J. Chromatogr. A*, 1067: 15–23.

29. <http://www.mmaonline.com> 25/09/2005. Minnesota Medical Association. D. Wallinga (2004) Antimicrobial Use in Animal Feed: An Ecological and Public Health Problem.
30. <http://www.userc.com> 25/09/2005 United States Environmental Research Center. (2003).
31. <http://www.fda.com> 25/09/2005. Food and Drug Administration, Center for Veterinary Medicine. (1997) Monitoring for residues in food animals.
32. <http://www.fda.com> 25/09/2005. Federal legislation of U.S.A., part 556– Tolerances for residues of animal drugs in food.
33. <http://www.fda.com> A proposed framework for evaluating and assuring the human safety of the microbial effects of antimicrobial new animal drugs intended for use in food-producing animals.
34. Caro, E., Marcé, R.M., Cormack, P.A.G., Sherrington, D.C., and Borrull, F. (2005) Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics. *Anal. Chim. Acta*, 552 (1–2): 81–86.
35. Furusawa, N. (2003) Isolation of tetracyclines in milk using a solid-phase extracting column and water eluent. *Talanta*, 59: 155–159.
36. Pouliquen, H., Keita, D., and Pinault, L. (1992) Determination of oxytetracycline in marine shellfish (*Crassotrea gigas*, *Ruditapes philippinarum* and *Scrobicularia plana*) by high performance liquid chromatography using solid phase extraction. *J. Chromatogr. B*, 627: 287–293.
37. Kuhne, M., Hamscher, G., Korner, U., Schedl, D., and Wenzel, S. (2001) Formation of anhydrotetracycline during a high-temperature treatment of animal-derived feed contaminated with tetracycline. *Food Chem.*, 75: 423–429.
38. Kuhne, M., Wegmann, S., Kobe, A., and Fries, R. (2000) Tetracycline residues in bones of slaughtered animals. *Food Control*, 11: 175–180.
39. Santos, M.D.F., Vermeersch, H., Remon, J.P., Schelkens, M., De Backerh, P., Ducatelle, R., and Haesebrouck, F. (1996) Validation of a high-performance liquid chromatographic method for the determination of doxycycline in turkey plasma. *J. Chromatogr. B*, 682: 301–308.
40. Korner, U., Kuhne, M., and Wenzel, S. (2001) Tetracycline residues in meat and bone meals. Part 1: Methodology and examination of weld samples. *Food Addit. Contam.*, 18 (4): 293–302.
41. Korner, U., Kuhne, M., and Wenzel, S. (2001) Tetracycline residues in meat and bone meals. Part 2: The effect of heat treatments on bound tetracycline residues. *Food Addit. Contam.*, 18 (7): 593–600.
42. Caballero, R.D., Torre-Lapasio, R., Garcia-Alvarez-Coque, M.C., and Ramis-Ramos, G. (2002) Rapid liquid determination of tetracyclines in animal feeds using a surfactant solution as mobile phase. *Anal. Lett.*, 35 (4): 687–705.
43. Zhao, F., Zhang, X., and Gan, Y. (2004) Determination of tetracyclines in ovine milk by high-performance liquid chromatography with a coulometric electrode array system. *J. Chromatogr. A*, 1055: 109–114.
44. Touraki, M., Rigas, P., Pergandas, P., and Kastritsis, C. (1995) Determination of oxytetracycline in the live fish feed Artemia using high-performance liquid chromatography with ultraviolet detection. *J. Chromatogr. B*, 663: 167–171.
45. Kawata, S., Sato, K., Nishikawa, Y., and Iwama, K. (1996) Liquid chromatographic determination of oxytetracycline in swine tissues. *J. Assoc. Off. Anal. Chem.*, 79 (6): 1463–1465.
46. Ashwoth, R.B. (1985) Liquid chromatographic assay of tetracyclines in tissues of food producing animals. *J. Assoc. Off. Anal. Chem.*, 68 (5): 1013–1018.

47. Oka, H., Matsumoto, H., Uno, K., Harada, K., Kadowaki, S., and Suzuki, M. (1985) Improvement of chemical analysis of antibiotics: VIII. Application of prepacked C<sub>18</sub> cartridge for the analysis of tetracycline residues in animal liver. *J. Chromatogr. A*, 325: 265–274.
48. Brandsteterová, E., Kubalec, P., Bovanová, L., Simko, P., Bednáriková, A., and Macháčková, L. (1997) SPE and MSPD as pre separation techniques for HPLC of tetracyclines in meat, milk and cheese. *Z Lebensm Unters Forsch A*, 205: 311–315.
49. De Wasch, K., Okerman, L., Croubels, S., De Brabander, H., Van Hoof, J., and De Backer, P. (1998) Detection of residues of tetracycline antibiotics in pork and chicken meat: correlation between results of screening and confirmatory test. *The Analyst*, 123 (12): 2737–2741.
50. Moats, W.A. (2000) Determination of tetracycline antibiotics in beef and pork tissues using ion-paired liquid chromatography. *J. Agric. Food Chem.*, 48: 2244–2248.
51. Sczesny, S., Nau, H., and Hamscher, G. (2003) Residue analysis of tetracyclines and their metabolites in eggs and in the environment by HPLC coupled with a microbiological assay and tandem mass spectrometry. *J. Agric. Food Chem.*, 51: 697–703.
52. Wrightson, W.R., Myers, S.R., and Galandiu, S. (1998) Analysis of minocycline by high-performance liquid chromatography in tissue and serum. *J. Chromatogr. B*, 706: 358–361.
53. Alfredsson, G., Branzell, C., Granelli, K., and Lundstrom, A. (2005) Simple and rapid screening and confirmation of tetracyclines in honey and egg by a dipstick test and LC–MS/MS. *Anal. Chim. Acta*, 529: 47–51.
54. Treetepvijit, S., Preechaworapun, A., Praphairaksit, N., Chuanuwatanakul, S., Einaga, Y., and Chailapakul, O. (2005) Use of nickel implanted boron-doped diamond thin film electrode coupled to HPLC system for the determination of tetracyclines. *Talanta*, 68 (4): 1329–1335.
55. Loetnantawong, B., Suracheep, C., Somasundrum, M., and Surareungchai, W. (2004) Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide-ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection. *Anal. Chem.*, 76: 2266–2272.
56. Walsh, J.R., Walker, L.V., and Webber, J.J. (1992) Determination of tetracyclines in bovine and porcine muscle by high performance liquid chromatography using solid-phase extraction. *J. Chromatogr. B*, 596: 211–216.
57. Holland, D.C., Faul, K.C., Roybal, J.E., Munns, R.K., and Shimoda, W. (1991) Liquid chromatographic determination of chlortetracycline hydrochloride in ruminant and poultry/swine tissues. *J. AOAC Int.*, 74 (5): 780–784.
58. Lock, C.M., Chen, L., and Volmer, D.A. (1999) Rapid analysis of tetracycline antibiotics by combined solid phase microextraction/high performance liquid chromatography/mass spectrometry. *Rapid Commun. Mass Spectrom.*, 13: 1744–1754.
59. Kijak, P.J., Leadbetter, M.G., Thomas, M.H., and Thompson, E.A. (1991) Confirmation of oxytetracycline, tetracycline and chlortetracycline residues in milk by particle beam liquid chromatography/mass spectrometry. *Biol. Mass Spectrom.*, 20: 789–795.
60. Khong, S.-P., Hammel, Y.-A., and Guy, P.A. (2005) Analysis of tetracyclines in honey by high-performance liquid chromatography/tandem mass spectrometry. *Rapid Commun. Mass Spectrom.*, 19: 493–502.

61. Wan, G., Cui, H., Zheng, H., Zhou, J., Liu, L., and Yu, X. (2005) Determination of tetracyclines residues in honey using high-performance liquid chromatography with potassium permanganate–sodium sulfite-cyclodextrin chemiluminescence detection. *J. Chromatogr. B*, 824: 57–64.
62. Blanchflower, W.J., McCracken, R.J., Haggan, A.S., and Kennedy, D.G. (1997) Confirmatory assay for the determination of tetracycline, oxytetracycline, chlortetracycline and its isomers in muscle and kidney using liquid chromatography-mass spectrometry. *J. Chromatogr. B*, 692: 351–360.
63. Goto, T., Ito, Y., Yamada, S., Matsumoto, H., and Oka, H. (2005) High-throughput analysis of tetracycline and penicillin antibiotics in animal tissues using electrospray tandem mass spectrometry with selected reaction monitoring transition. *J. Chromatogr. A*, 1100 (2): 193–199.
64. Samanidou, V.F., Nikolaidou, K.I., and Papadoyannis, I.N. (2005) Development and validation of an HPLC confirmatory method for the determination of tetracycline antibiotics residues in bovine muscle according to the European Union regulation 2002/657/EC. *J. Separ. Sci.*, 28 (17): 2247–2258.
65. Cinquini, A.L., Longo, F., Anastasi, G., Giannetti, L., and Cozzani, R. (2003) Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. *J. Chromatogr. A*, 987: 227–233.
66. Beaudry, F. and del Castillo, J.R.E. (2005) Determination of chlortetracycline in swine plasma by LC-ESI/MS/MS. *Biomed. Chromatogr.*, 19 (7): 523–528.
67. Andersen, W.C., Roybal, J.E., Gonzales, S.A., Turnipseed, S.B., Pfenning, A.P., and Kuck, L.R. (2004) Determination of tetracycline residues in shrimp and whole milk using liquid chromatography with ultraviolet detection and residue confirmation by mass spectrometry. *Anal. Chim. Acta*, 529: 145–150.
68. Fedeniuk, R.W., Ramamurthi, S., and McCurdy, A.R. (1996) Application of reversed-phase liquid chromatography and prepak C<sub>18</sub> cartridges for the analysis of oxytetracycline and related compounds. *J. Chromatogr. B*, 677: 291–297.
69. Degroodt, J.M., De Bukanski, B.W., and Srebrink, S. (1993) Multiresidue analysis of tetracyclines in kidney by HPLC and photodiode array detection. *J. Liq. Chromatogr.*, 16 (16): 3515–1529.
70. Zurhelle, G., Muller-Seitz, E., and Petz, M. (2000) Automated residue analysis of tetracyclines and their metabolites in whole egg, egg white, egg yolk and hen's plasma utilizing a modified ASTED system. *J. Chromatogr. B*, 739: 191–203.
71. Oka, H., Ikai, Y., Kawamura, N., Uno, K., and Yamada, M. (1987) Improvement of chemical analysis of antibiotics XII: simultaneous analysis of seven tetracyclines in honey. *J. Chromatogr.*, 400: 211–216.
72. Nakazawa, H., Ino, S., Kato, K., Watanabe, T., Ito, Y., and Oka, H. (1999) Simultaneous determination of residual tetracyclines in foods by high-performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. *J. Chromatogr. B*, 732: 55–64.
73. Oka, H., Ikai, Y., Ito, Y., Hayakawa, J., Harada, K., Suzuki, M., Odani, H., and Maeda, K. (1997) Improvement of chemical analysis of antibiotics XXIII: identification of residual TCs in bovine tissues by electrospray HPLC–tandem mass spectrometry. *J. Chromatogr. B*, 693: 337–344.
74. Cooper, A.D., Stubbings, G.W.F., Kelly, M., Tarbin, J.A., Farrington, W.H.H., and Shearer, G. (1998) Improved method for the on-line metal chelate affinity chromatography–high-performance liquid chromatographic determination of tetracycline antibiotics in animal products. *J. Chromatogr. A*, 812: 321–326.

75. Croubels, S.M., Vanoosthuyze, K.E.I., and Van Peteghem, C.H. (1997) Use of metal chelate affinity chromatography and membrane-based ion-exchange as cleanup procedure for trace residue analysis of tetracyclines in animal tissues and egg. *J. Chromatogr. B*, 690: 173–179.
76. Cherlet, M., Schelkens, M., Croubels, S., and De Backer, P. (2003) Quantitative multi-residue analysis of tetracyclines and their 4-epimers in pig tissues by high-performance liquid chromatography combined with positive-ion electrospray ionization mass spectrometry. *Anal. Chim. Acta*, 492: 199–213.
77. Stubbings, G., Tarbin, J.A., and Shearer, G. (1996) On-line metal chelate affinity chromatography cleanup for the high-performance liquid chromatographic determination of tetracycline antibiotics in animal tissues. *J. Chromatogr. B*, 679: 137–145.
78. Posyniak, A., Zmudzki, J., Semeniuk, S., Niedzielska1, J., and Ellis, R. (1998) Determination of tetracycline residues in animal tissues by liquid chromatography. *Biomed. Chromatogr.*, 12: 294–299.
79. Carson, M.C. (1993) Simultaneous determination of multiple tetracycline residues in milk using metal chelate affinity chromatography. *J. AOAC Int.*, 76 (2): 329–334.
80. Carson, M.C., Ngoh, M.A., and Hadley, S.W. (1998) Confirmation of multiple tetracycline residues in milk and oxytetracycline in shrimp by liquid chromatography–particle beam mass spectrometry. *J. Chromatogr. B*, 712: 113–128.
81. Horii, S. (1994) Liquid chromatographic determination of oxytetracycline and chlortetracycline residues in animal tissues. *J. Liq. Chromatogr.*, 17 (1): 213–221.
82. Viñas, P., Balsalobre, N., López-Erroz, C., and Hernández-Córdoba, M. (2004) Liquid chromatography with ultraviolet absorbance detection for the analysis of tetracycline residues in honey. *J. Chromatogr. A*, 102: 125–129.
83. Oka, H., Uno, K., Harada, K., Hayaashi, M., and Suzuki, M. (1984) Improvement of chemical analysis of antibiotics VI: Detection reagents for tetracyclines in thin layer chromatography. *J. Chromatogr.*, 295: 129–139.
84. Naidong, W., Hua, S., Roets, E., and Hoogmartens, J. (2003) Assay and purity control of tetracycline, chlortetracycline and oxytetracycline in animal feeds and premixes by TLC densitometry with fluorescence detection. *J. Pharm. Biomed. Anal.*, 33: 85–93.
85. Choma, I., Grenda, D., Malinowska, I., and Suprynowicz, Z. (1999) Determination of flumequine and doxycycline in milk by a simple thin-layer chromatographic method. *J. Chromatogr. B*, 734: 7–14.
86. Oka, H., Ikai, Y., Hayakawa, J., Masuda, K., Harada, K., Suzuki, M., Martz, V., and MacNeilll, J.D. (1993) Improvement of chemical analysis of antibiotics XIII. Identification of residual tetracyclines in bovine tissues by TLC/FABMS with a sample condensation technique. *J. Agric. Food Chem.*, 41: 410–415.
87. Huang, T.S., Du, W.X., Marshall, M.R., and Wie, C.I. (1997) Determination of oxytetracycline in raw and cooked channel catfish by capillary electrophoresis. *J. Agric. Food Chem.*, 45: 2602–2605.
88. Tjornelund, J. and Hansen, S.H. (1997) Use of metal complexation in non-aqueous capillary electrophoresis systems for the separation and improved detection of tetracyclines. *J. Chromatogr. A*, 779: 235–243.
89. Schneider, M.J. (2004) Rapid fluorescence screening assay for enrofloxacin and tetracyclines in chicken muscle. *J. Agric. Food Chem.*, 52: 7809–7813.
90. Okerman, L., Croubels, S., Cherlet, M., Wasch, K., De Backer, P., and Van Hoof, J. (2004) Evaluation and establishing the performance of different

screening tests for tetracycline residues in animal tissues. *Food Addit. Contam.*, 21 (2): 145–153.

91. Montero, A., Althaus, R.L., Molina, A., Berruga, I., and Molina, M.P. (2005) Detection of antimicrobial agents by a specific microbiological method (Eclipse100) for ewe milk. *Small Ruminant Res.*, 57: 229–237.

92. Babak, V., Schlegelova, J., and Vlkova, H. (2005) Interpretation of the results of antimicrobial susceptibility analysis of *Escherichia coli* isolates from bovine milk, meat and associated foodstuffs. *Food Microbiol.*, 22: 353–358.

93. Pellegrini, G.E., Carpico, G., and Coni, E. (2004) Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk. *Anal. Chim. Acta*, 520: 13–18.

94. Hansen, L.H. and Sorensen, S.J. (2000) Detection and quantitation of tetracyclines by whole cell biosensors. *FEMS Microbiol. Lett.*, 190: 273–278.

95. Hansen, L.H., Aarestrup, F., and Sorensen, S.J. (2002) Quantification of bioavailable chlortetracycline in pig feces using a bacterial whole cell-biosensor. *Vet. Microbiol.*, 87: 51–57.

96. Kurittu, J., Karp, M., and Korpela, M. (2000) Detection of tetracyclines with luminescent bacterial strains. *Luminescence*, 15: 291–297.

97. Pang, Y., Cui, H., Zheng, H., Wan, G., Liu, L., and Yu, X. (2005) Flow injection analysis of tetracyclines using inhibited Ru(bpy)<sub>3</sub><sup>2+</sup>/tripropylamine electrochemiluminescence system. *Luminescence*, 20: 8–15.

98. Draft Commission Decision laying down performance criteria for the analytical methods to be used for detecting certain substances and residues thereof in live animals and animal products according to Council Directive 96/23/EC repealing Commission Decision 90/515/EC, 93/256/EC and 93/257/EC SANCO/1805/2000, European Commission; Directorate General for Public Health and Consumers Protection, 18 July 2000.

99. Extract of Draft Volume 8, Notice to applicants, Veterinary medicinal products: establishment of maximum residue limits (MRLs) for residues of veterinary products in foodstuffs of animal origin: development and validation of a proposed regulatory method. EMEA/CVMP/573/00-FINAL.